cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168056 Expansion of (1+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).

Original entry on oeis.org

1, 1, 3, 5, 5, 7, 9, 9, 11, 13, 13, 15, 17, 17, 19, 21, 21, 23, 25, 25, 27, 29, 29, 31, 33, 33, 35, 37, 37, 39, 41, 41, 43, 45, 45, 47, 49, 49, 51, 53, 53, 55, 57, 57, 59, 61, 61, 63, 65, 65, 67, 69, 69, 71, 73, 73, 75, 77, 77, 79, 81, 81, 83, 85, 85, 87, 89, 89, 91, 93, 93
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Crossrefs

Cf. A168053.

Programs

  • Magma
    I:=[1,1,3,5]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 08 2016
  • Mathematica
    LinearRecurrence[{1, 0, 1, -1}, {1, 1, 3, 5}, 100] (* G. C. Greubel, Jul 07 2016 *)
    CoefficientList[Series[(1 + 2 x^2 + x^3) / ((1 - x)^2 (1 + x + x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 08 2016 *)

Formula

G.f.: (1+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = A168057(n)/2^n.
a(n) = (12*n+3+6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017

A168058 Expansion of x + sqrt(1-2x-3x^2).

Original entry on oeis.org

1, 0, -2, -2, -4, -8, -18, -42, -102, -254, -646, -1670, -4376, -11596, -31022, -83670, -227268, -621144, -1706934, -4713558, -13072764, -36398568, -101704038, -285095118, -801526446, -2259520830, -6385455594, -18086805002
Offset: 0

Views

Author

Paul Barry, Nov 17 2009

Keywords

Comments

a(n+2) = -2*A001006(n). Hankel transform is (-1)^n*A168057(n).
Essentially the same as A167022. - R. J. Mathar, Nov 18 2009

Examples

			1 - 2*x^2 - 2*x^3 - 4*x^4 - 8*x^5 - 18*x^6 - 42*x^7 - 102*x^8 - 254*x^9 - ...
		

Crossrefs

Cf. A168055.

Programs

  • Mathematica
    CoefficientList[Series[x + Sqrt[1 - 2 x - 3 x^2], {x, 0, 50}], x] (* G. C. Greubel, Jul 08 2016 *)

Formula

a(n) = 0^n - 2*Sum_{k=0..floor((n-2)/2)} C(n-2,2k)*A000108(k).
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Jan 23 2020
Showing 1-2 of 2 results.