cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168061 Denominator of (n+3) / ((n+2) * (n+1) * n).

Original entry on oeis.org

3, 24, 10, 120, 105, 112, 252, 720, 165, 1320, 858, 728, 1365, 3360, 680, 4896, 2907, 2280, 3990, 9240, 1771, 12144, 6900, 5200, 8775, 19656, 3654, 24360, 13485, 9920, 16368, 35904, 6545, 42840, 23310, 16872, 27417, 59280, 10660, 68880, 37023, 26488, 42570
Offset: 1

Views

Author

Keywords

Comments

Numerator of ((n+3)/(n+2)/(n+1)/n) = A060789(n).

Crossrefs

Cf. A060789.

Programs

  • GAP
    List([1..10^3],n->DenominatorRat((n+3)/(n+2)/(n+1)/n)); # Muniru A Asiru, Feb 04 2018
  • Maple
    seq(denom((n+3)/(n+2)/(n+1)/n), n=1..10^3); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    Table[Denominator[(n+3)/(n+2)/(n+1)/n],{n,60}]
    LinearRecurrence[{0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1},{3,24,10,120,105,112,252,720,165,1320,858,728,1365,3360,680,4896,2907,2280,3990,9240,1771,12144,6900,5200},50] (* Harvey P. Dale, Apr 06 2017 *)
  • PARI
    vector(50, n, denominator(((n+3)/(n+2)/(n+1)/n))) \\ Colin Barker, Feb 04 2018
    
  • PARI
    Vec(x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4) + O(x^60)) \\ Colin Barker, Feb 04 2018
    

Formula

a(n) = 4*a(n-6) -6*a(n-12) +4*a(n-18) -a(n-24) = A007531(n+2)/A089145(n). - R. J. Mathar, Nov 18 2009
G.f.: x*(3 + 24*x + 10*x^2 + 120*x^3 + 105*x^4 + 112*x^5 + 240*x^6 + 624*x^7 + 125*x^8 + 840*x^9 + 438*x^10 + 280*x^11 + 375*x^12 + 624*x^13 + 80*x^14 + 336*x^15 + 105*x^16 + 40*x^17 + 30*x^18 + 24*x^19 + x^20) / ((1 - x)^4*(1 + x)^4*(1 - x + x^2)^4*(1 + x + x^2)^4). - Colin Barker, Feb 04 2018