cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168221 a(n) = A006368(A006368(n)).

Original entry on oeis.org

0, 1, 2, 3, 9, 6, 7, 4, 18, 5, 11, 12, 27, 15, 16, 8, 36, 10, 20, 21, 45, 24, 25, 13, 54, 14, 29, 30, 63, 33, 34, 17, 72, 19, 38, 39, 81, 42, 43, 22, 90, 23, 47, 48, 99, 51, 52, 26, 108, 28, 56, 57, 117, 60, 61, 31, 126, 32, 65, 66, 135, 69, 70, 35, 144, 37, 74, 75, 153, 78, 79, 40
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2009

Keywords

Comments

Inverse integer permutation to A168222;
a(A006369(n)) = A006368(n).

Crossrefs

Programs

  • Mathematica
    Table[Nest[If[OddQ[#],Floor[(3#+2)/4],3#/2]&,n,2],{n,0,100}] (* Paolo Xausa, Dec 15 2023 *)
    LinearRecurrence[{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1},{0,1,2,3,9,6,7,4,18,5,11,12,27,15,16,8,36,10,20,21,45,24,25,13},80] (* Harvey P. Dale, Feb 07 2024 *)
  • Python
    def A006368(n):
        if n%2 == 0:
            return 3*(n//2)
        elif n%4 == 1:
            return 3*(n//4)+1
        else:
            return 3*(n+1)//4-1
    n = 0
    while n < 30:
        print(n,A006368(A006368(n)))
        n = n+1 # A.H.M. Smeets, Aug 14 2019

Formula

From Luce ETIENNE, Aug 14 2019: (Start)
a(n) = 2*a(n-16) - a(n-32).
a(n) = (-18*(40*m^7 - 973*m^6 + 9352*m^5 - 45115*m^4 + 114520*m^3 - 145432*m^2 + 75168*m - 10080)*floor(n/8) - m*(332*m^6 - 7973*m^5 + 75236*m^4 - 352835*m^3 + 855008*m^2 - 999992*m + 422664) + m*(4*m^6 - 105*m^5 + 1120*m^4 - 6195*m^3 + 18676*m^2 - 28980*m + 18000)*(-1)^(n/8))/10080 where m = n mod 8.
(End)
From A.H.M. Smeets, Aug 14 2019: (Start)
a(4*n) = 9*n.
a(8*n+1) = a(8*n-1)+1, n > 0.
a(8*n+3) = a(8*n+2)+1.
a(8*n+5) = a(8*n+3)+3 = a(8*n+2)+4.
a(8*n+6) = a(8*n+5)+1 = a(8*n+3)+4 = a(8*n+2)+5.
a(16*n+1) = 9*n+1.
a(16*n+2) = 18*n+2.
a(16*n+3) = a(16*n+2)+1 = 18*n+3.
a(16*n+5) = a(16*n+3)+3 = 18*n+6.
a(16*n+6) = a(16*n+5)+1 = 18*n+7.
a(16*n+7) = (a(16*n+6)+1)/2 = 9*n+4.
a(16*n+9) = 9*n+5.
a(16*n+10) = 2*a(16*n+9)+1 = 18*n+11.
a(16*n+11) = a(16*n+10)+1 = 18*n+12.
a(16*n+13) = a(16*n+11)+3 = 18*n+15.
a(16*n+14) = a(16*n+13) = 18*n+16.
a(16*n+15) = a(16*n+14)/2 = 9*n+8.
From this, (9*n-7)/16 <= a(n) <= 9*n/4.
(End)
From Colin Barker, Aug 23 2019: (Start)
G.f.: x*(1 - x + x^2)*(1 + 3*x + 5*x^2 + 11*x^3 + 12*x^4 + 8*x^5 + 10*x^7 + 14*x^8 + 13*x^9 + 8*x^10 + 13*x^11 + 14*x^12 + 10*x^13 + 8*x^15 + 12*x^16 + 11*x^17 + 5*x^18 + 3*x^19 + x^20) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2*(1 + x^4)^2*(1 + x^8)).
a(n) = a(n-8) + a(n-16) - a(n-24) for n>23.
(End)