A168229 Decimal expansion of arctan(sqrt(7)).
1, 2, 0, 9, 4, 2, 9, 2, 0, 2, 8, 8, 8, 1, 8, 8, 8, 1, 3, 6, 4, 2, 1, 3, 3, 0, 1, 5, 3, 1, 9, 0, 8, 4, 7, 6, 1, 0, 8, 5, 9, 7, 5, 4, 5, 6, 4, 7, 5, 3, 3, 2, 7, 7, 6, 6, 7, 4, 0, 9, 5, 2, 2, 9, 8, 6, 2, 0, 5, 4, 5, 1, 2, 1, 8, 5, 7, 8, 9, 3, 6, 6, 8, 3, 1, 6, 0, 3, 6, 0, 7, 2, 0, 1, 5, 0, 7, 8, 8, 2, 1, 4, 6, 0, 3
Offset: 1
Examples
arctan(sqrt(7)) = 1.209429202888189... .
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Kunle Adegoke, Infinite arctangent sums involving Fibonacci and Lucas numbers, arXiv:1603.08097 [math.NT], 2016.
- Djurdje Cvijovic, A dilogarithmic integral arising in quantum field theory, arXiv:0911.3773 [math.CA], 2009.
- Index entries for transcendental numbers
Programs
-
Magma
[Arctan(Sqrt(7))]; // G. C. Greubel, Nov 18 2017
-
Mathematica
RealDigits[ArcTan[Sqrt[7]], 10, 50][[1]] (* G. C. Greubel, Nov 18 2017 *)
-
PARI
atan(sqrt(7)) \\ Michel Marcus, Mar 11 2013
Formula
Smallest positive solution of cos(x) + sqrt(1 + cos^2(x)) = sqrt(2). - Geoffrey Caveney, Apr 24 2014
Equals Sum_{k >= 1} atan(5*sqrt(7)*F(4k-1)/L(2*(4k-1))) where L=A000032 and F=A000045. See also A033891. - Michel Marcus, Mar 29 2016
Equals arccos(1/(2*sqrt(2))). - Amiram Eldar, May 28 2021
Extensions
More digits from R. J. Mathar, Dec 06 2009
Comments