A168237 a(n) = (6*n + 3*(-1)^n - 3)/4.
0, 0, 3, 3, 6, 6, 9, 9, 12, 12, 15, 15, 18, 18, 21, 21, 24, 24, 27, 27, 30, 30, 33, 33, 36, 36, 39, 39, 42, 42, 45, 45, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 84, 87, 87, 90, 90, 93, 93, 96, 96, 99, 99, 102, 102, 105, 105
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 [a(0)=0 added by _Georg Fischer_, Feb 02 2021]
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[3*n/2-3/4+3*(-1)^n/4: n in [0..70]]; // Vincenzo Librandi, Sep 16 2013
-
Mathematica
CoefficientList[Series[3*x^2/((1 + x)*(x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 16 2013 *) Table[(6*n + 3*(-1)^n - 3)/4, {n,0,50}] (* or *) LinearRecurrence[{1,1,-1}, {0,0,3,3}, 50] (* G. C. Greubel, Jul 16 2016 *) With[{c=Range[0,108,3]},Riffle[c,c]] (* Harvey P. Dale, Feb 03 2021 *)
Formula
From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 3*A110654(n-1) for n >= 1.
G.f.: 3*x^2 / ( (1+x)*(x-1)^2 ). (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Vincenzo Librandi, Sep 16 2013
E.g.f.: 3*(exp(x)*x - sinh(x))/2. - G. C. Greubel, Jul 16 2016
a(n) = 3*floor(n/2). - Daniel Checa, Mar 10 2024
Extensions
New definition by R. J. Mathar, Jan 05 2011
a(0)=0 added by N. J. A. Sloane, Feb 02 2021 at the suggestion of Allan C. Wechsler