cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168256 Triangle read by rows: Catalan number C(n) repeated n+1 times.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 5, 5, 14, 14, 14, 14, 14, 42, 42, 42, 42, 42, 42, 132, 132, 132, 132, 132, 132, 132, 429, 429, 429, 429, 429, 429, 429, 429, 1430, 1430, 1430, 1430, 1430, 1430, 1430, 1430, 1430, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 4862, 4862
Offset: 0

Views

Author

Mark Dols, Nov 21 2009

Keywords

Comments

As square array, it is A x B where A = square array A039599 (completed with zeros) and B = transpose of A. - Philippe Deléham, May 22 2015

Examples

			Triangle begins:
  1;
  1, 1;
  2, 2, 2;
  5, 5, 5, 5 ;
  14, 14, 14, 14, 14;
  42, 42, 42, 42, 42, 42;
From _Philippe Deléham_, May 22 2015: (Start)
A = square array A039599, completed with zeros.
  1.....0.....0.....0...
  1.....1.....0.....0...
  2.....3.....1.....0...
  5.....9.....5.....1...
  ......................
B = transpose of A.
  1.....1.....2.....5...
  0.....1.....3.....9...
  0.....0.....1.....5...
  0.....0.....0.....1...
  ......................
A x B = this sequence read as square array.
  1.....1.....2.....5...
  1.....2.....5....14...
  2.....5....14....42...
  5....14....42...132...
  ...................... (End)
		

Crossrefs

Cf. A000108, A000984 (row sums), A039599, A172414, A172417.

Programs

  • Mathematica
    Table[PadRight[{}, n + 1, CatalanNumber[n]], {n, 0, 8}] // Flatten (* Amiram Eldar, Aug 18 2022, after Harvey P. Dale at A172417 *)
  • Python
    from math import isqrt
    from sympy import catalan
    def A168256(n): return catalan((isqrt(n+1<<3)+1>>1)-1) # Chai Wah Wu, Nov 04 2024

Formula

T(n,k) = A000108(n). - R. J. Mathar, Nov 03 2016
G.f.: (x*C(x)-x*y*C(x*y))/(x-x*y), where C(x) is the g.f. of A000108. - Vladimir Kruchinin, Nov 19 2020
Sum_{n>=0} 1/a(n) = 4 + 28*Pi/(27*sqrt(3)). - Amiram Eldar, Aug 18 2022