A168288 T(n,k) = 3*A046802(n+1,k+1) - 2*A007318(n,k), triangle read by rows (0 <= k <= n).
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 87, 37, 1, 1, 83, 373, 373, 83, 1, 1, 177, 1389, 2609, 1389, 177, 1, 1, 367, 4791, 15263, 15263, 4791, 367, 1, 1, 749, 15787, 80285, 134647, 80285, 15787, 749, 1, 1, 1515, 50529, 393657, 1033401, 1033401, 393657, 50529
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 5, 1; 1, 15, 15, 1; 1, 37, 87, 37, 1; 1, 83, 373, 373, 83, 1; 1, 177, 1389, 2609, 1389, 177, 1; 1, 367, 4791, 15263, 15263, 4791, 367, 1; 1, 749, 15787, 80285, 134647, 80285, 15787, 749, 1; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
Crossrefs
Programs
-
Mathematica
p[t_] = 3*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 2*Exp[t*(1 + x)]; Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
-
Maxima
A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$ T(n, k) := 3*A046802(n + 1, k + 1) - 2*binomial(n, k)$ create_list(T(n, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 21 2018 */
Formula
E.g.f.: 3*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 2*exp(t*(1 + x)).
Extensions
Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018