A142175
Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 36, 36, 1;
1, 133, 420, 133, 1;
1, 449, 3334, 3334, 449, 1;
1, 1446, 21939, 49364, 21939, 1446, 1;
1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
[A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
-
p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
-
A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 20 2018 */
-
# from sage.all import * # (use for Python)
from sage.combinat.combinat import eulerian_number
def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024
A142147
Irregular triangle read by rows: first row is 1, and the n-th row gives the coefficients in the expansion of (1/2*x)*(1 - 2*x*(1 - x))^(n + 1)*Li(-n, 2*x*(1 - x)), where Li(n, z) is the polylogarithm.
Original entry on oeis.org
1, 1, -1, 1, 1, -4, 2, 1, 7, -12, -4, 12, -4, 1, 21, 0, -102, 100, 4, -32, 8, 1, 51, 160, -532, -24, 904, -672, 48, 80, -16, 1, 113, 980, -1094, -5128, 8760, -736, -6224, 3920, -432, -192, 32, 1, 239, 4284, 5276, -43964, 19764, 90272, -114080, 19824, 36304
Offset: 0
Triangle begins:
1;
1, -1;
1, 1, -4, 2;
1, 7, -12, -4, 12, -4;
1, 21, 0, -102, 100, 4, -32, 8;
1, 51, 160, -532, -24, 904, -672, 48, 80, -16;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
p[x_, n_] = If[n == 0, 1, (1 + 2*(-1 + x)*x)^(n + 1)*PolyLog[-n, 2*x*(1 - x)]/(2*x)];
Table[CoefficientList[FullSimplify[Expand[p[x, n]]], x], {n, 0, 10}]//Flatten
A168287
T(n,k) = 2*A046802(n+1,k+1) - A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 60, 26, 1, 1, 57, 252, 252, 57, 1, 1, 120, 931, 1746, 931, 120, 1, 1, 247, 3201, 10187, 10187, 3201, 247, 1, 1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1, 1, 1013, 33698, 262466, 688976, 688976, 262466, 33698, 1013
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 11, 11, 1;
1, 26, 60, 26, 1;
1, 57, 252, 252, 57, 1;
1, 120, 931, 1746, 931, 120, 1;
1, 247, 3201, 10187, 10187, 3201, 247, 1;
1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
p[t_] = 2*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - Exp[t*(1 + x)];
Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
-
A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
T(n, k) := 2*A046802(n + 1, k + 1) - binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
A168289
T(n,k) = 4*A046802(n+1,k+1) - 3*A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 114, 48, 1, 1, 109, 494, 494, 109, 1, 1, 234, 1847, 3472, 1847, 234, 1, 1, 487, 6381, 20339, 20339, 6381, 487, 1, 1, 996, 21040, 107028, 179506, 107028, 21040, 996, 1, 1, 2017, 67360, 524848, 1377826, 1377826, 524848
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 19, 19, 1;
1, 48, 114, 48, 1;
1, 109, 494, 494, 109, 1;
1, 234, 1847, 3472, 1847, 234, 1;
1, 487, 6381, 20339, 20339, 6381, 487, 1;
1, 996, 21040, 107028, 179506, 107028, 21040, 996, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
p[t_] = 4*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 3*Exp[t*(1 + x)];
Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
-
A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
T(n, k) := 4*A046802(n + 1, k + 1) - 3*binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
A168290
T(n,k) = 5*A046802(n+1,k+1) - 4*A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 23, 23, 1, 1, 59, 141, 59, 1, 1, 135, 615, 615, 135, 1, 1, 291, 2305, 4335, 2305, 291, 1, 1, 607, 7971, 25415, 25415, 7971, 607, 1, 1, 1243, 26293, 133771, 224365, 133771, 26293, 1243, 1, 1, 2519, 84191, 656039, 1722251, 1722251, 656039
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 1;
1, 23, 23, 1;
1, 59, 141, 59, 1;
1, 135, 615, 615, 135, 1;
1, 291, 2305, 4335, 2305, 291, 1;
1, 607, 7971, 25415, 25415, 7971, 607, 1;
1, 1243, 26293, 133771, 224365, 133771, 26293, 1243, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
p[t_] = 5*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 4*Exp[t*(1 + x)];
Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[ t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
-
A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
T(n, k) := 5*A046802(n + 1, k + 1) - 4*binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
A168291
T(n,k) = 4*A046802(n+1,k+1) - 2*A008518(n,k) - A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 32, 82, 32, 1, 1, 65, 330, 330, 65, 1, 1, 130, 1159, 2304, 1159, 130, 1, 1, 259, 3801, 13195, 13195, 3801, 259, 1, 1, 516, 12016, 67316, 117170, 67316, 12016, 516, 1, 1, 1029, 37212, 319332, 889230, 889230, 319332, 37212
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 15, 15, 1;
1, 32, 82, 32, 1;
1, 65, 330, 330, 65, 1;
1, 130, 1159, 2304, 1159, 130, 1;
1, 259, 3801, 13195, 13195, 3801, 259, 1;
1, 516, 12016, 67316, 117170, 67316, 12016, 516, 1;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A123125(n, k) := sum((-1)^(k - j)*(binomial(n - j, k - j))*stirling2(n, j)*j!, j, 0, k)$
A046802(n, k) := sum(binomial(n - 1, r)*A123125(r, k - 1), r, k - 1, n - 1)$
A008518(n, k) := A123125(n, k) + A123125(n, k + 1)$
T(n, k) := 4*A046802(n + 1, k + 1) - 2*A008518(n, k) - binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
A168292
T(n,k) = 24*A046802(n+1,k+1) - 9*A008518(n,k) - 8*A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
7, 7, 7, 7, 38, 7, 7, 99, 99, 7, 7, 220, 546, 220, 7, 7, 461, 2236, 2236, 461, 7, 7, 942, 8001, 15596, 8001, 942, 7, 7, 1903, 26697, 89921, 89921, 26697, 1903, 7, 7, 3824, 85660, 463520, 796594, 463520, 85660, 3824, 7, 7, 7665, 268530, 2224350, 6068400
Offset: 0
Triangle begins:
7;
7, 7;
7, 38, 7;
7, 99, 99, 7;
7, 220, 546, 220, 7;
7, 461, 2236, 2236, 461, 7;
7, 942, 8001, 15596, 8001, 942, 7;
7, 1903, 26697, 89921, 89921, 26697, 1903, 7;
7, 3824, 85660, 463520, 796594, 463520, 85660, 3824, 7;
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A123125(n, k) := sum((-1)^(k - j)*(binomial(n - j, k - j))*stirling2(n, j)*j!, j, 0, k)$
A046802(n, k) := sum(binomial(n - 1, r)*A123125(r, k - 1), r, k - 1, n - 1)$
A008518(n, k) := A123125(n, k) + A123125(n, k + 1)$
T(n, k) := 24*A046802(n + 1, k + 1) - 9*A008518(n, k) - 8*binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
A168293
T(n,k) = 12*A046802(n+1,k+1) - 9*A008518(n,k) - 2*A007318(n,k), triangle read by rows (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 33, 33, 1, 1, 64, 186, 64, 1, 1, 119, 724, 724, 119, 1, 1, 222, 2415, 5120, 2415, 222, 1, 1, 421, 7491, 28799, 28799, 7491, 421, 1, 1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1, 1, 1587, 66342, 649554, 1934544, 1934544, 649554
Offset: 0
Triangle begins:
1;
1, 1;
1, 14, 1;
1, 33, 33, 1;
1, 64, 186, 64, 1;
1, 119, 724, 724, 119, 1;
1, 222, 2415, 5120, 2415, 222, 1;
1, 421, 7491, 28799, 28799, 7491, 421, 1;
1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1:
... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
-
A123125(n, k) := sum((-1)^(k - j)*(binomial(n - j, k - j))*stirling2(n, j)*j!, j, 0, k)$
A046802(n, k) := sum(binomial(n - 1, r)*A123125(r, k - 1), r, k - 1, n - 1)$
A008518(n, k) := A123125(n, k) + A123125(n, k + 1)$
T(n, k) := 12*A046802(n + 1, k + 1) - 9*A008518(n, k) - 2*binomial(n, k)$
create_list(T(n, k), n, 0, 10, k, 0, n);
/* Franck Maminirina Ramaharo, Oct 21 2018 */
Showing 1-8 of 8 results.
Comments