cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A142175 Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 16 2008

Keywords

Comments

Row n gives the coefficients in the expansion of (1/4)*(1 + x)^n + (9/4)*2^n*(1 - x)^(1 + n)*Phi(x, -n, 1/2) - (3/2)*(1 - x)^(n + 2)*Phi(x, -1 - n, 1), where Phi is the Lerch transcendant.

Examples

			Triangle begins:
     1;
     1,    1;
     1,    8,      1;
     1,   36,     36,      1;
     1,  133,    420,    133,      1;
     1,  449,   3334,   3334,    449,      1;
     1, 1446,  21939,  49364,  21939,   1446,    1;
     1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
    [A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
    
  • Mathematica
    p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
  • Maxima
    A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
    A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
    T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 20 2018 */
    
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
    def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
    print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024

Formula

E.g.f.: (exp((1 + x)*y) - 6*(1 - x)^2*exp(y*(1 - x))/(1 - x*exp(y*(1 - x)))^2 + 9*(1 - x)*exp((1 - x)*y)/(1 - x*exp(2*(1 - x)*y)))/4. - Franck Maminirina Ramaharo, Oct 20 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018

A142147 Irregular triangle read by rows: first row is 1, and the n-th row gives the coefficients in the expansion of (1/2*x)*(1 - 2*x*(1 - x))^(n + 1)*Li(-n, 2*x*(1 - x)), where Li(n, z) is the polylogarithm.

Original entry on oeis.org

1, 1, -1, 1, 1, -4, 2, 1, 7, -12, -4, 12, -4, 1, 21, 0, -102, 100, 4, -32, 8, 1, 51, 160, -532, -24, 904, -672, 48, 80, -16, 1, 113, 980, -1094, -5128, 8760, -736, -6224, 3920, -432, -192, 32, 1, 239, 4284, 5276, -43964, 19764, 90272, -114080, 19824, 36304
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2008

Keywords

Examples

			Triangle begins:
     1;
     1, -1;
     1,  1,  -4,    2;
     1,  7, -12,   -4,  12,  -4;
     1, 21,   0, -102, 100,   4,  -32,  8;
     1, 51, 160, -532, -24, 904, -672, 48, 80, -16;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[x_, n_] = If[n == 0, 1, (1 + 2*(-1 + x)*x)^(n + 1)*PolyLog[-n, 2*x*(1 - x)]/(2*x)];
    Table[CoefficientList[FullSimplify[Expand[p[x, n]]], x], {n, 0, 10}]//Flatten

Formula

E.g.f.: ((1 - x)*(1 - 2*x)*exp(t*(1 + 2*x^2)) + x*exp(2*t*x))/(exp(2*t*x) - 2*x*(1 - x)*exp(t*(1 + 2*x^2))). - Franck Maminirina Ramaharo, Oct 22 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 21 2018

A168287 T(n,k) = 2*A046802(n+1,k+1) - A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 60, 26, 1, 1, 57, 252, 252, 57, 1, 1, 120, 931, 1746, 931, 120, 1, 1, 247, 3201, 10187, 10187, 3201, 247, 1, 1, 502, 10534, 53542, 89788, 53542, 10534, 502, 1, 1, 1013, 33698, 262466, 688976, 688976, 262466, 33698, 1013
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     1,    4,     1;
     1,   11,    11,     1;
     1,   26,    60,    26,     1;
     1,   57,   252,   252,    57,     1;
     1,  120,   931,  1746,   931,   120,     1;
     1,  247,  3201, 10187, 10187,  3201,   247,   1;
     1,  502, 10534, 53542, 89788, 53542, 10534, 502, 1;
     ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[t_] = 2*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - Exp[t*(1 + x)];
    Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
  • Maxima
    A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
    T(n, k) := 2*A046802(n + 1, k + 1) - binomial(n, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 21 2018 */

Formula

E.g.f.: 2*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - exp(t*(1 + x)).

Extensions

Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018

A168288 T(n,k) = 3*A046802(n+1,k+1) - 2*A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 87, 37, 1, 1, 83, 373, 373, 83, 1, 1, 177, 1389, 2609, 1389, 177, 1, 1, 367, 4791, 15263, 15263, 4791, 367, 1, 1, 749, 15787, 80285, 134647, 80285, 15787, 749, 1, 1, 1515, 50529, 393657, 1033401, 1033401, 393657, 50529
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
     1;
     1,   1;
     1,   5,     1;
     1,  15,    15,     1;
     1,  37,    87,    37,      1;
     1,  83,   373,   373,     83,     1;
     1, 177,  1389,  2609,   1389,   177,     1;
     1, 367,  4791, 15263,  15263,  4791,   367,   1;
     1, 749, 15787, 80285, 134647, 80285, 15787, 749, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[t_] = 3*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 2*Exp[t*(1 + x)];
    Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
  • Maxima
    A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
    T(n, k) := 3*A046802(n + 1, k + 1) - 2*binomial(n, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 21 2018 */

Formula

E.g.f.: 3*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 2*exp(t*(1 + x)).

Extensions

Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018

A168289 T(n,k) = 4*A046802(n+1,k+1) - 3*A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 114, 48, 1, 1, 109, 494, 494, 109, 1, 1, 234, 1847, 3472, 1847, 234, 1, 1, 487, 6381, 20339, 20339, 6381, 487, 1, 1, 996, 21040, 107028, 179506, 107028, 21040, 996, 1, 1, 2017, 67360, 524848, 1377826, 1377826, 524848
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
     1;
     1,   1;
     1,   6,     1;
     1,  19,    19,      1;
     1,  48,   114,     48,      1;
     1, 109,   494,    494,    109,      1;
     1, 234,  1847,   3472,   1847,    234,     1;
     1, 487,  6381,  20339,  20339,   6381,   487,   1;
     1, 996, 21040, 107028, 179506, 107028, 21040, 996, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[t_] = 4*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 3*Exp[t*(1 + x)];
    Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
  • Maxima
    A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
    T(n, k) := 4*A046802(n + 1, k + 1) - 3*binomial(n, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 21 2018 */

Formula

E.g.f: 4*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 3*exp(t*(1 + x)).

Extensions

Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018

A168290 T(n,k) = 5*A046802(n+1,k+1) - 4*A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 23, 23, 1, 1, 59, 141, 59, 1, 1, 135, 615, 615, 135, 1, 1, 291, 2305, 4335, 2305, 291, 1, 1, 607, 7971, 25415, 25415, 7971, 607, 1, 1, 1243, 26293, 133771, 224365, 133771, 26293, 1243, 1, 1, 2519, 84191, 656039, 1722251, 1722251, 656039
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
    1;
    1,    1;
    1,    7,     1;
    1,   23,    23,      1;
    1,   59,   141,     59,      1;
    1,  135,   615,    615,    135,      1;
    1,  291,  2305,   4335,   2305,    291,     1;
    1,  607,  7971,  25415,  25415,   7971,   607,    1;
    1, 1243, 26293, 133771, 224365, 133771, 26293, 1243, 1;
     ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Mathematica
    p[t_] = 5*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 4*Exp[t*(1 + x)];
    Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[ t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten
  • Maxima
    A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$
    T(n, k) := 5*A046802(n + 1, k + 1) - 4*binomial(n, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 21 2018 */

Formula

E.g.f.: 5*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 4*exp(t*(1 + x)).

Extensions

Edited, new name by Franck Maminirina Ramaharo, Oct 21 2018

A168291 T(n,k) = 4*A046802(n+1,k+1) - 2*A008518(n,k) - A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 32, 82, 32, 1, 1, 65, 330, 330, 65, 1, 1, 130, 1159, 2304, 1159, 130, 1, 1, 259, 3801, 13195, 13195, 3801, 259, 1, 1, 516, 12016, 67316, 117170, 67316, 12016, 516, 1, 1, 1029, 37212, 319332, 889230, 889230, 319332, 37212
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
     1;
     1,   1;
     1,   6,     1;
     1,  15,    15,     1;
     1,  32,    82,    32,      1;
     1,  65,   330,   330,     65,     1;
     1, 130,  1159,  2304,   1159,   130,     1;
     1, 259,  3801, 13195,  13195,  3801,   259,   1;
     1, 516, 12016, 67316, 117170, 67316, 12016, 516, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

Formula

E.g.f.: 4*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 2*(exp(t) - x*exp(t*x))/(exp(t*x) - x*exp(t)) - exp(t*(1 + x)).

Extensions

Edited, new name by Franck Maminirina Ramaharo, Oct 21 2018

A168293 T(n,k) = 12*A046802(n+1,k+1) - 9*A008518(n,k) - 2*A007318(n,k), triangle read by rows (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 33, 33, 1, 1, 64, 186, 64, 1, 1, 119, 724, 724, 119, 1, 1, 222, 2415, 5120, 2415, 222, 1, 1, 421, 7491, 28799, 28799, 7491, 421, 1, 1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1, 1, 1587, 66342, 649554, 1934544, 1934544, 649554
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2009

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    1,  14,     1;
    1,  33,    33,      1;
    1,  64,   186,     64,      1;
    1, 119,   724,    724,    119,      1;
    1, 222,  2415,   5120,   2415,    222,     1;
    1, 421,  7491,  28799,  28799,   7491,   421,   1;
    1, 812, 22456, 142268, 257866, 142268, 22456, 812, 1:
     ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

Formula

E.g.f.: 12*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 9*(exp(t) - x*exp(t*x))/(exp(t*x) - x*exp(t)) - 2*exp(t*(1 + x)).

Extensions

Edited, and new name by Franck Maminirina Ramaharo, Oct 21 2018
Showing 1-8 of 8 results.