cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128281 a(n) is the least product of n distinct odd primes m=p_1*p_2*...*p_n, such that (d+m/d)/2 are all primes for each d dividing m.

Original entry on oeis.org

3, 21, 105, 1365, 884037
Offset: 1

Views

Author

Kok Seng Chua (chuakokseng(AT)hotmail.com), Mar 05 2007

Keywords

Comments

From Iain Fox, Aug 26 2020: (Start)
a(6) > 10^9 if it exists.
All terms are members of A076274 since the definition requires that (1+m)/2 be prime.
The number of prime factors of m congruent to 3 (mod 4) must be even except for n=1.
(End)
a(6) > 2*10^11 if it exists. - David A. Corneth, Aug 27 2020
a(n) >= A070826(n+1) by definition of the sequence. - Iain Fox, Aug 28 2020

Examples

			105=3*5*7, (3*5*7+1)/2=53, (3+5*7)/2=19, (5+3*7)/2=13, (7+3*5)/2=11 are all primes and 105 is the least such number which is the product of 3 primes, so a(3)=3.
		

Crossrefs

Subsequence of A076274.
Lower bound: A070826.

Programs

  • PARI
    a(n)=if(n==1, return(3)); my(p=prod(k=1, n, prime(k+1))); forstep(m=p+if(p%4-1, 2), +oo, 4, if(bigomega(m)==n && omega(m)==n, fordiv(m, d, if(!isprime((d+m/d)/2), next(2))); return(m))) \\ Iain Fox, Aug 27 2020

Extensions

Definition corrected by Iain Fox, Aug 25 2020

A361075 Products of exactly 7 distinct odd primes.

Original entry on oeis.org

4849845, 5870865, 6561555, 7402395, 7912905, 8273265, 8580495, 8843835, 9444435, 10015005, 10140585, 10465455, 10555545, 10705695, 10818885, 10975965, 11565015, 11696685, 11996985, 12267255, 12777765, 12785955, 13096545, 13408395, 13498485, 13528515, 13667745, 13803405
Offset: 1

Views

Author

Karl-Heinz Hofmann, Mar 01 2023

Keywords

Examples

			a(1)     =   4849845 = 3*5*7*11*13*17*19
a(9663)  = 253808555 = 5*7*11*13*17*19*157
a(9961)  = 258573315 = 3*5*7*11*13*17*1013
a(10000) = 259173915 = 3*5*7*11*13*41*421
		

Crossrefs

Cf. A065091, A046388 (2 distinct odd primes).
Cf. A046389 (3 distinct odd primes), A046390 (4 distinct odd primes).
Cf. A046391 (5 distinct odd primes), A168352 (6 distinct odd primes).

Programs

  • Python
    import numpy
    from sympy import nextprime, sieve, primepi
    k_upto = 14 * 10**6
    array = numpy.zeros(k_upto,dtype="i4")
    sieve_max_number = primepi(nextprime(k_upto // 255255))
    for s in range(2,sieve_max_number):
        array[sieve[s]:k_upto][::sieve[s]] += 1
    for s in range(2,sieve_max_number):
        array[sieve[s]**2:k_upto][::sieve[s]**2] = 0
    print([k for k in range(1,k_upto,2) if array[k] == 7])
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A361075(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,7)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024
Showing 1-2 of 2 results.