cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168414 a(n) = (18*n - 9*(-1)^n - 3)/4.

Original entry on oeis.org

6, 6, 15, 15, 24, 24, 33, 33, 42, 42, 51, 51, 60, 60, 69, 69, 78, 78, 87, 87, 96, 96, 105, 105, 114, 114, 123, 123, 132, 132, 141, 141, 150, 150, 159, 159, 168, 168, 177, 177, 186, 186, 195, 195, 204, 204, 213, 213, 222, 222, 231, 231, 240, 240, 249, 249, 258
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Programs

  • Magma
    [6+9*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[6 + 9 Floor[(n - 1)/2], {n, 70}] (* or *) CoefficientList[Series[3 (2 + x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{6,6,15},60] (* Harvey P. Dale, May 17 2017 *)

Formula

a(n) = 9*n - a(n-1) - 6, n>1.
From R. J. Mathar, Jul 10 2011: (Start)
a(n) = 3*A168236(n).
G.f.: 3*x*(2 + x^2) / ( (1+x)*(x-1)^2 ). (End)
a(n) = 6 + 9*Floor((n-1)/2). - Vincenzo Librandi, Sep 19 2013
From G. C. Greubel, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
E.g.f.: (3/4)*(-3 + 4*exp(x) +(6*x - 1)*exp(2*x))*exp(-x). (End)

Extensions

Definition replaced by Lava formula of Nov 2009. - R. J. Mathar, Jul 10 2011