A168425 Large Associated Ramanujan Prime, p_i.
3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 131, 151, 157, 173, 181, 191, 229, 233, 239, 241, 251, 269, 271, 283, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 571, 577, 593, 599, 601, 607, 613, 643, 647, 653, 659, 661
Offset: 1
Keywords
Examples
For n=10, the n-th Ramanujan prime is A104272(n)= 97, the value of k = 25, so i is >= 26, i-n >= 16, the i-n prime is 53, and 2*53 = 106. This leaves the range [97, 106] for the 26th prime which is 101. In this example, 101 is the large associated Ramanujan prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009) 630-635.
- Jonathan Sondow, John W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
- Jonathan Sondow, Ramanujan Prime in MathWorld
- Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 19 (2014), #A19.
- Wikipedia, Ramanujan Prime
Programs
-
Mathematica
nn = 100; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3 nn]} ]; RamanujanPrimes = R + 1; Prime[PrimePi[#]+1]& /@ RamanujanPrimes (* Jean-François Alcover, Nov 03 2018, after T. D. Noe in A104272 *)
-
PARI
genit(n=100)={my(L=vector(n),s=0,k=1,z);for(k=1,prime(3*n)-1,if(ispseudoprime(k),s++);if(k%2==0&&ispseudoprime(k/2),s--);if(s
nextprime(x+1),L);v} \\ Bill McEachen, Jun 24 2023 (incorporates code from A104272) -
Perl
use ntheory ":all"; say next_prime(nth_ramanujan_prime($)) for 1..100; # _Dana Jacobsen, Dec 25 2015
Formula
a(n) = prime(primepi(A104272(n)) + 1).
Comments