A168444 Number of partitions of the set {1,2,...,n} such that no block is a sequence of consecutive integers (including 1-element blocks).
1, 0, 0, 0, 1, 5, 21, 91, 422, 2103, 11226, 63879, 385691, 2461004, 16535820, 116628147, 861033654, 6637143698, 53297137552, 444940442553, 3854539901147, 34592812084693, 321125878230123, 3079144039478532, 30457076370822777, 310407099470429818, 3255972198123974137, 35114803641531204063
Offset: 0
Examples
For n=5 the a(5) = 5 partitions are 13-245, 14-235, 24-135, 25-135, 35-124.
References
- Richard Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge Univ Press, 2011, page 192, solution 111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Martin Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
Crossrefs
Column k=0 of A177254.
Programs
-
Magma
b:= func< n | n eq 0 select 1 else (&+[(-1)^(n+j)*Binomial(j,n-j)*Bell(j): j in [Ceiling(n/2)..n]]) >; A168444:= func< n | n eq 0 select 1 else b(n)-b(n-1) >; [A168444(n): n in [0..30]]; // G. C. Greubel, May 12 2024
-
Maple
with(combinat): y:=sum(bell(n)*x^n,n=0..20): z:=(1-x)*subs(x=x*(1-x),y): taylor(z,x=0,21);
-
Mathematica
nn = 20; b := Sum[BellB[n] (x - x^2)^n, {n, 0, nn}]; CoefficientList[ Series[ (1-x) b, {x, 0, nn}], x] (* Geoffrey Critzer, Jun 01 2013 *)
-
Maxima
b(n):=if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*belln(k),k,ceiling(n/2),n); a(n):=if n=0 then 1 else b(n)-b(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
-
PARI
N=66; x = 'x+O('x^N); B = serlaplace(exp(exp(x)-1)); gf = (1-x)*subst(B,'x, x*(1-x)); Vec(gf) \\ Joerg Arndt, Jun 01 2013
-
SageMath
@CachedFunction def b(n): return 1 if (n==0) else sum((-1)^(n+j)*binomial(j,n-j)*bell_number(j) for j in range((n//2), n+1)) def A168444(n): return 1 if (n==0) else b(n) - b(n-1) [A168444(n) for n in range(31)] # G. C. Greubel, May 12 2024
Formula
Ordinary g.f.: (1-x)F(x(1-x)), where F(x) = sum_{n>=0} B(n)x^n (the ordinary g.f. for the Bell numbers)
a(n) = b(n)-b(n-1), b(n) = if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*B(k),k=ceiling(n/2)..n). - Vladimir Kruchinin, Sep 09 2010
Extensions
Added more terms, Joerg Arndt, Jun 01 2013
Comments