cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168444 Number of partitions of the set {1,2,...,n} such that no block is a sequence of consecutive integers (including 1-element blocks).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 21, 91, 422, 2103, 11226, 63879, 385691, 2461004, 16535820, 116628147, 861033654, 6637143698, 53297137552, 444940442553, 3854539901147, 34592812084693, 321125878230123, 3079144039478532, 30457076370822777, 310407099470429818, 3255972198123974137, 35114803641531204063
Offset: 0

Views

Author

Richard Stanley, Nov 25 2009

Keywords

Comments

Some similar results appear in Klazar (see links).

Examples

			For n=5 the a(5) = 5 partitions are 13-245, 14-235, 24-135, 25-135, 35-124.
		

References

  • Richard Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge Univ Press, 2011, page 192, solution 111.

Crossrefs

Column k=0 of A177254.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else (&+[(-1)^(n+j)*Binomial(j,n-j)*Bell(j): j in [Ceiling(n/2)..n]]) >;
    A168444:= func< n | n eq 0 select 1 else b(n)-b(n-1) >;
    [A168444(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): y:=sum(bell(n)*x^n,n=0..20): z:=(1-x)*subs(x=x*(1-x),y): taylor(z,x=0,21);
  • Mathematica
    nn = 20; b := Sum[BellB[n] (x - x^2)^n, {n, 0, nn}]; CoefficientList[ Series[ (1-x) b, {x, 0, nn}], x] (* Geoffrey Critzer, Jun 01 2013 *)
  • Maxima
    b(n):=if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*belln(k),k,ceiling(n/2),n); a(n):=if n=0 then 1 else b(n)-b(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    N=66;  x = 'x+O('x^N);
    B = serlaplace(exp(exp(x)-1));
    gf = (1-x)*subst(B,'x, x*(1-x));
    Vec(gf) \\ Joerg Arndt, Jun 01 2013
    
  • SageMath
    @CachedFunction
    def b(n): return 1 if (n==0) else sum((-1)^(n+j)*binomial(j,n-j)*bell_number(j) for j in range((n//2), n+1))
    def A168444(n): return 1 if (n==0) else b(n) - b(n-1)
    [A168444(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

Ordinary g.f.: (1-x)F(x(1-x)), where F(x) = sum_{n>=0} B(n)x^n (the ordinary g.f. for the Bell numbers)
a(n) = b(n)-b(n-1), b(n) = if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*B(k),k=ceiling(n/2)..n). - Vladimir Kruchinin, Sep 09 2010

Extensions

Added more terms, Joerg Arndt, Jun 01 2013