cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168456 a(n) = (10*n - 5*(-1)^n + 1)/2.

Original entry on oeis.org

8, 8, 18, 18, 28, 28, 38, 38, 48, 48, 58, 58, 68, 68, 78, 78, 88, 88, 98, 98, 108, 108, 118, 118, 128, 128, 138, 138, 148, 148, 158, 158, 168, 168, 178, 178, 188, 188, 198, 198, 208, 208, 218, 218, 228, 228, 238, 238, 248, 248, 258, 258, 268, 268, 278, 278, 288
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [8+10*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    RecurrenceTable[{a[1]==8,a[n]==10n-a[n-1]-4},a,{n,60}] (* or *) LinearRecurrence[ {1,1,-1},{8,8,18},60] (* or *) With[{c=NestList[ 10+#&,8,30]},Riffle[c,c]] (* Harvey P. Dale, Aug 02 2013 *)
    Table[8 + 10 Floor[(n - 1)/2], {n, 70}] (* or *)   CoefficientList[Series[2 (4 + x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)

Formula

a(n) = 10*n - a(n-1) - 4, with n>1, a(1)=8.
a(1)=8, a(2)=8, a(3)=18; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Aug 02 2013
From R. J. Mathar, Aug 06 2013: (Start)
G.f. 2*x*(4 + x^2) / ( (1+x)*(x-1)^2 ).
a(n) = 2*A168280(n). (End)
a(n) = 8 + 10*floor((n-1)/2). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (1/2)*(-5 + 4*exp(x) + (10*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016