A168472 Partial sums of products of two distinct primes (A006881).
6, 16, 30, 45, 66, 88, 114, 147, 181, 216, 254, 293, 339, 390, 445, 502, 560, 622, 687, 756, 830, 907, 989, 1074, 1160, 1247, 1338, 1431, 1525, 1620, 1726, 1837, 1952, 2070, 2189, 2311, 2434, 2563, 2696, 2830, 2971, 3113, 3256, 3401, 3547, 3702, 3860, 4019
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1001: # to get all a(n) where A006881(n) < N Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]): L:= sort(convert({seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)},list)): ListTools:-PartialSums(L); # Robert Israel, Apr 29 2018
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; s=0;lst={};Do[If[f[n],AppendTo[lst,s+=n]],{n,6!}];lst With[{nn=50},Take[Accumulate[Union[Times@@@Subsets[Prime[Range[nn]],{2}]]],nn]] (* Harvey P. Dale, Aug 08 2013 *)