cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A168473 Primes in A168472.

Original entry on oeis.org

181, 293, 907, 2311, 2971, 3547, 4019, 4523, 5651, 7103, 7753, 8419, 14489, 15443, 17417, 18097, 18443, 22171, 31123, 32063, 41611, 42683, 44851, 48761, 67829, 69221, 79273, 98047, 103903, 107347, 114407, 122597, 132967, 149909, 154081
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A168472.

Programs

  • Maple
    N:= 10^4: # to get all a(n) where A006881(n) < N
    Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
    L:= sort(convert({seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)}, list)):
    A168472:= ListTools:-PartialSums(L):
    select(isprime, A168472); # Robert Israel, Mar 20 2019
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; s=0;lst={};Do[If[f[n],If[PrimeQ[s+=n],AppendTo[lst,s]]],{n,7!}];lst
    With[{nn=50},Select[Accumulate[Union[Times@@@Subsets[Prime[Range[2nn]],{2}]]],PrimeQ,nn]] (* Harvey P. Dale, Aug 08 2013 *)

A112141 Product of the first n semiprimes.

Original entry on oeis.org

4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2005

Keywords

Comments

Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum.

Examples

			a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
                        4: (2)
                       24: (3,1)
                      216: (3,3)
                     2160: (4,3,1)
                    30240: (5,3,1,1)
                   453600: (5,4,2,1)
                  9525600: (5,5,2,2)
                209563200: (6,5,2,2,1)
               5239080000: (6,5,4,2,1)
             136216080000: (7,5,4,2,1,1)
            4495130640000: (7,6,4,2,2,1)
          152834441760000: (8,6,4,2,2,1,1)
         5349205461600000: (8,6,5,3,2,1,1)
       203269807540800000: (9,6,5,3,2,1,1,1)
      7927522494091200000: (9,7,5,3,2,2,1,1)
    364666034728195200000: (10,7,5,3,2,2,1,1,1)
  17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
		

Crossrefs

Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A000040 lists primes, with partial products A002110 (primorials).
A000142 lists factorials, with partial products A000178 (superfactorials).
A001358 lists semiprimes, with partial products A112141 (this sequence).
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial products A339191.
A101048 counts partitions into semiprimes (restricted: A338902).
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    A112141 := proc(n)
        mul(A001358(i),i=1..n) ;
    end proc:
    seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
    FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
  • PARI
    a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
    
  • Python
    from sympy import factorint
    def aupton(terms):
        alst, k, p = [], 1, 1
        while len(alst) < terms:
            if sum(factorint(k).values()) == 2:
                p *= k
                alst.append(p)
            k += 1
        return alst
    print(aupton(18)) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = Product_{i=1..n} A001358(i).
A001222(a(n)) = 2*n.

A339116 Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.

Original entry on oeis.org

6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2

Views

Author

Gus Wiseman, Dec 01 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.

Examples

			Triangle begins:
   6
  10  15
  14  21  35
  22  33  55  77
  26  39  65  91 143
  34  51  85 119 187 221
  38  57  95 133 209 247 323
  46  69 115 161 253 299 391 437
  58  87 145 203 319 377 493 551 667
  62  93 155 217 341 403 527 589 713 899
		

Crossrefs

A339194 gives row sums.
A100484 is column k = 1.
A001748 is column k = 2.
A001750 is column k = 3.
A006094 is column k = n - 1.
A090076 is column k = n - 2.
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums A339360.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
Subsequence of A019565.

Programs

  • Mathematica
    Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
  • PARI
    row(n) = {prime(n)*primes(n-1)}
    { for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = prime(n) * prime(k) for k < n.

Extensions

Offset corrected by Andrew Howroyd, Jan 19 2023

A025129 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.

Original entry on oeis.org

0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1

Views

Author

Keywords

Comments

This is the sum of distinct squarefree semiprimes with prime indices summing to n + 1. A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 05 2020

Examples

			From _Gus Wiseman_, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
    6 =  6
   10 = 10
   29 = 14 + 15
   43 = 22 + 21
   94 = 26 + 33 + 35
  128 = 34 + 39 + 55
  231 = 38 + 51 + 65 + 77
  279 = 46 + 57 + 85 + 91
(End)
		

Crossrefs

The nonsquarefree version is A024697 (shifted right).
Row sums of A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
A339194 sums squarefree semiprimes grouped by greater prime factor.

Programs

  • Haskell
    a025129 n = a025129_list !! (n-1)
    a025129_list= f (tail a000040_list) [head a000040_list] 1 where
       f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
                       f ps (p : qs) (k + 1)
    -- Reinhard Zumkeller, Apr 07 2014
  • Mathematica
    f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
  • PARI
    A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
    

Formula

a(n) = A024697(n) for even n. - M. F. Hasler, Apr 06 2014

Extensions

Following suggestions by Robert Israel and N. J. A. Sloane, initial 0=a(1) added by M. F. Hasler, Apr 06 2014

A332765 Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.

Original entry on oeis.org

6, 10, 15, 22, 35, 55, 77, 91, 143, 187, 221, 253, 323, 391, 493, 551, 667, 713, 899, 1073, 1189, 1271, 1517, 1591, 1763, 1961, 2183, 2419, 2537, 2773, 3127, 3233, 3599, 3953, 4189, 4331, 4757, 4897, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633, 8989, 9797, 9991, 10403, 10807
Offset: 2

Views

Author

Bobby Jacobs, Apr 23 2020

Keywords

Comments

The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - Ivan N. Ianakiev, Apr 28 2020
Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Dec 06 2020

Examples

			Here are the ways (up to reversal) to order the first four primes:
  2, 3, 5, 7: Products: 6, 15, 35;  Largest product: 35
  2, 3, 7, 5: Products: 6, 21, 35;  Largest product: 35
  2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
  2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
  2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
  2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
  3, 2, 5, 7: Products: 6, 10, 35;  Largest product: 35
  3, 2, 7, 5: Products: 6, 14, 35;  Largest product: 35
  3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
  3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
  5, 2, 3, 7: Products: 10, 6, 21;  Largest product: 21
  5, 3, 2, 7: Products: 15, 6, 14;  Largest product: 15
The minimum largest product is 15, so a(4) = 15.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime indices begins:
      6: {1,2}     551: {8,10}    3127: {16,17}
     10: {1,3}     667: {9,10}    3233: {16,18}
     15: {2,3}     713: {9,11}    3599: {17,18}
     22: {1,5}     899: {10,11}   3953: {17,19}
     35: {3,4}    1073: {10,12}   4189: {17,20}
     55: {3,5}    1189: {10,13}   4331: {18,20}
     77: {4,5}    1271: {11,13}   4757: {19,20}
     91: {4,6}    1517: {12,13}   4897: {17,23}
    143: {5,6}    1591: {12,14}   5293: {19,22}
    187: {5,7}    1763: {13,14}   5723: {17,25}
    221: {6,7}    1961: {12,16}   5963: {19,24}
    253: {5,9}    2183: {12,17}   6499: {19,25}
    323: {7,8}    2419: {13,17}   6887: {20,25}
    391: {7,9}    2537: {14,17}   7171: {20,26}
    493: {7,10}   2773: {15,17}   7663: {22,25}
(End)
		

Crossrefs

A338904 and A338905 have this sequence as row maxima.
A339115 is the not necessarily squarefree version.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339114 is the least (squarefree) semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
    riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
    a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
    (* Ivan N. Ianakiev, Apr 28 2020 *)

Formula

It appears that a(n) = A332877(n - 1) for n > 5.

Extensions

a(12)-a(13) from Jinyuan Wang, Apr 24 2020
More terms from Ivan N. Ianakiev, Apr 28 2020

A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   6
  10
  14  15
  21  22
  26  33  35
  34  39  55
  38  51  65  77
  46  57  85  91
  58  69  95 119 143
  62  87 115 133 187
  74  93 145 161 209 221
  82 111 155 203 247 253
  86 123 185 217 299 319 323
		

Crossrefs

A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums A024697.
A338907/A338908 are the union of odd/even rows.
A339114/A332765 are the row minima/maxima.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]

A338908 Squarefree semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     10: {1,3}     115: {3,9}     213: {2,20}
     21: {2,4}     118: {1,17}    218: {1,29}
     22: {1,5}     129: {2,14}    235: {3,15}
     34: {1,7}     133: {4,8}     237: {2,22}
     39: {2,6}     134: {1,19}    247: {6,8}
     46: {1,9}     146: {1,21}    253: {5,9}
     55: {3,5}     155: {3,11}    254: {1,31}
     57: {2,8}     159: {2,16}    259: {4,12}
     62: {1,11}    166: {1,23}    267: {2,24}
     82: {1,13}    183: {2,18}    274: {1,33}
     85: {3,7}     187: {5,7}     295: {3,17}
     87: {2,10}    194: {1,25}    298: {1,35}
     91: {4,6}     203: {4,10}    301: {4,14}
     94: {1,15}    205: {3,13}    303: {2,26}
    111: {2,12}    206: {1,27}    314: {1,37}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A300061 and A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A338907 is the odd version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A289182/A115392 list the positions of odd/even terms in A001358.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& EvenQ[Total[PrimePi/@First/@FactorInteger[#]]]&]

A339360 Sum of all squarefree numbers with greatest prime factor prime(n).

Original entry on oeis.org

1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2020

Keywords

Examples

			The initial terms are:
   1 = 1,
   2 = 2,
   9 = 3 + 6,
  60 = 5 + 10 + 15 + 30.
		

Crossrefs

A010036 takes prime indices here to binary indices, row sums of A209862.
A048672 takes prime indices to binary indices in squarefree numbers.
A054640 divides the n-th term by prime(n), row sums of A261144.
A072047 counts prime factors of squarefree numbers.
A339194 is the restriction to semiprimes, row sums of A339116.
A339195 has this as row sums.
A002110 lists primorials.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A246867 groups squarefree numbers by weight, with row sums A147655.
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

  • Maple
    f:= proc(n) local i;
      `if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1)
    end proc:
    map(f, [$0..20]); # Robert Israel, Dec 08 2020
  • Mathematica
    Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]

Formula

For n >= 1, a(n) = A054640(n-1) * prime(n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 08 2025

A339194 Sum of all squarefree semiprimes with greater prime factor prime(n).

Original entry on oeis.org

0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2020

Keywords

Examples

			The triangle A339116 with row sums equal to this sequence begins (n > 1):
    6 = 6
   25 = 10 + 15
   70 = 14 + 21 + 35
  187 = 22 + 33 + 55 + 77
		

Crossrefs

A025129 gives sums of squarefree semiprimes by weight, row sums of A338905.
A143215 is the not necessarily squarefree version, row sums of A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A339360 looks at all squarefree numbers, row sums of A339195.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
  • PARI
    a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024

Formula

a(n) = prime(n) * Sum_{k=1..n-1} prime(k) = prime(n) * A007504(n-1).
a(n) = A024447(n) - A024447(n-1).
a(n) = A034960(n) - A143215(n). - Marco Zárate, Jun 14 2024

A143215 a(n) = prime(n) * Sum_{i=1..n} prime(i).

Original entry on oeis.org

4, 15, 50, 119, 308, 533, 986, 1463, 2300, 3741, 4960, 7289, 9758, 12083, 15416, 20193, 25960, 30561, 38056, 45369, 51976, 62489, 72542, 85707, 102820, 117261, 130192, 146697, 161320, 180009, 218440, 242481, 272356, 295653, 339124, 366477
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Comments

Row sums of triangle A087112.
Sum of semiprimes (A001358) with greater prime factor prime(n). - Gus Wiseman, Dec 06 2020

Examples

			The series begins (4, 15, 50, 119, 308,...) since the primes = (2, 3, 5, 7, 11,...) and partial sum of primes = (2, 5, 10, 17, 28,...).
a(5) = 308 = 11 * 28.
a(4) = 119 = sum of row 4 terms of triangle A087112: (14 + 21 + 35 + 49).
		

Crossrefs

Row sums of A087112.
The squarefree version is A339194, row sums of A339116.
Semiprimes grouped by weight are A338904, with row sums A024697.
Squarefree semiprimes grouped by weight are A338905, with row sums A025129.
Squarefree numbers grouped by greatest prime factor are A339195, with row sums A339360.
A001358 lists semiprimes.
A006881 lists squarefree semiprimes.
A332765 is the greatest semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

Formula

a(n) = A000040(n) * A007504(n).

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Sep 21 2009
Showing 1-10 of 12 results. Next