cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168510 Products across consecutive rows of the denominators of the Leibniz harmonic triangle (A003506).

Original entry on oeis.org

1, 4, 54, 2304, 300000, 116640000, 133413966000, 444110104166400, 4267295479315169280, 117595223746560000000000, 9245836018244425723200000000, 2065215715357207851951980544000000
Offset: 1

Views

Author

Harlan J. Brothers, Nov 27 2009

Keywords

Comments

As in A001142, lim_{n->inf} (a(n)a(n+2))/a(n+1)^2 = e, demonstrating an underlying relation between A003506 and Pascal's triangle A007318. Unlike A001142, in this case the function is asymptotic from above.

Examples

			For n=3, row 3 of A003506 = {3, 6, 3} and a(3)=54.
a(5) = 5^5 * 4^3 * 3^1 * 2^-1 * 1^-3 = 5^5 * 3 * 2^5 = 300000. - _Peter Munn_, Mar 07 2018
		

Crossrefs

Cf. A003506, A001142, A007318. For n >= 1, a(n) = n!*A001142(n).

Programs

  • Mathematica
    Table[n! Product[k^(2 k - n - 1), {k, 1, n}], {n, 1, 12}]
    Table[Product[Product[(1 - 1/k)^-k, {k, 2, j}], {j, 1, n}], {n, 1, 12}]
    (* or *)
    a[1] = 1; a[n_] := a[n - 1] Product[(1 - 1/k)^-k, {k, 2, n}]

Formula

a(n) = n!*Product_{k=1..n} k^(2k-n-1).
a(n) = Product_{j=1..n} Product_{k=2..j} ((1-1/k)^-k).
a(1) = 1; a(n) = a(n-1)*Product_{k=2..n} ((1-1/k)^-k).
a(n) ~ A^2 * exp(n^2/2 - 1/12) * n^(n/2 + 1/6) / (2*Pi)^(n/2), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 22 2017
a(n) = Product_{k=0..n-1} (n-k)^(n-2k). - Peter Munn, Mar 07 2018