A168512 Sum of divisors of n weighted by divisor multiplicity in n.
1, 3, 4, 9, 6, 12, 8, 19, 16, 18, 12, 30, 14, 24, 24, 41, 18, 42, 20, 44, 32, 36, 24, 64, 36, 42, 46, 58, 30, 72, 32, 75, 48, 54, 48, 102, 38, 60, 56, 94, 42, 96, 44, 86, 81, 72, 48, 134, 64, 98, 72, 100, 54, 126, 72, 124, 80, 90, 60, 170, 62, 96, 107, 153, 84, 144, 68, 128, 96
Offset: 1
Keywords
Examples
The divisors of 16 are 1, 2, 4, 8, 16, which are of multiplicity 1, 4, 2, 1, 1, respectively, in 16. So a(16) = 1*1 + 4*2 + 2*4 + 1*8 + 1*16 = 41.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[1 + Total[Function[i, i*Select[Range[Log[i, n]], Divisible[n, i^#] &][[-1]]] /@ Rest@Divisors@n], {n, 69}] (* Ivan Neretin, Jul 26 2015 *) Table[1 + DivisorSum[n, # IntegerExponent[n, #] &, # > 1 &], {n, 69}] (* Michael De Vlieger, May 20 2017 *)
-
PARI
A286561(n,k) = { my(i=1); if(1==k, 1, while(!(n%(k^i)), i = i+1); (i-1)); }; A168512(n) = sumdiv(n,d,A286561(n,d)*d); \\ Antti Karttunen, May 20 2017
Formula
a(n) = Sum_{d|n} A286561(n,d)*d. - Antti Karttunen, May 20 2017
Extensions
Extended by Ray Chandler, Dec 08 2009
Comments