A168525 Triangle of coefficients of g.f. a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
19, 19, 19, 19, 146, 19, 19, 759, 759, 19, 19, 3154, 10374, 3154, 19, 19, 11543, 89398, 89398, 11543, 19, 19, 39210, 615669, 1394444, 615669, 39210, 19, 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19, 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19
Offset: 0
Examples
Triangle begins as: 19; 19, 19; 19, 146, 19; 19, 759, 759, 19; 19, 3154, 10374, 3154, 19; 19, 11543, 89398, 89398, 11543, 19; 19, 39210, 615669, 1394444, 615669, 39210, 19; 19, 127303, 3747297, 16267301, 16267301, 3747297, 127303, 19; 19, 401858, 21201472, 160611806, 302914330, 160611806, 21201472, 401858, 19;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, a_, b_, c_]:= CoefficientList[Series[a*(1+x)^n + b*(1-x)^(n+2)* PolyLog[-n-1, x]/x + 2^n*c*(1-x)^(n+1)*LerchPhi[x, -n, 1/2], {x,0,30}], x]; Table[T[n, 65/2, -162/2, 135/2], {n,0,12}]//Flatten (* modified by G. C. Greubel, Mar 19 2022 *)
-
Sage
m=12 def LerchPhi(x,s,a): return sum( x^j/(j+a)^s for j in (0..3*m) ) def p(n,x,a,b,c): return a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) def T(n,k,a,b,c): return ( p(n,x,a,b,c) ).series(x, n+1).list()[k] flatten([[T(n,k,65/2, -162/2, 135/2) for k in (0..n)] for n in (0..m)]) # G. C. Greubel, Mar 19 2022
Formula
From G. C. Greubel, Mar 19 2022: (Start)
G.f.: a*(1+x)^n + b*(1-x)^(n+2)*polylog(-n-1, x)/x + 2^n*c*(1-x)^(n+1)*LerchPhi(x, -n, 1/2), with a = 65/2, b = -162/2, c = 135/2.
T(n, n-k) = T(n, k). (End)
Extensions
Edited by G. C. Greubel, Mar 19 2022