A168557 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (-1)^n*((x + 1)^n - x^n + 1), 0 <= k <= max(0, n - 1).
1, -2, 2, 2, -2, -3, -3, 2, 4, 6, 4, -2, -5, -10, -10, -5, 2, 6, 15, 20, 15, 6, -2, -7, -21, -35, -35, -21, -7, 2, 8, 28, 56, 70, 56, 28, 8, -2, -9, -36, -84, -126, -126, -84, -36, -9, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, -2, -11, -55, -165, -330, -462, -462, -330
Offset: 0
Examples
Triangle begins: 1; -2; 2, 2; -2, -3, -3; 2, 4, 6, 4; -2, -5, -10, -10, -5; 2, 6, 15, 20, 15, 6; -2, -7, -21, -35, -35, -21, -7; 2, 8, 28, 56, 70, 56, 28, 8; -2, -9, -36, -84, -126, -126, -84, -36, -9; 2, 10, 45, 120, 210, 252, 210, 120, 45, 10; -2, -11, -55, -165, -330, -462, -462, -330, -165, -55, -11; 2, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12; ...
Programs
-
Mathematica
Table[CoefficientList[(-1)^n*(x + 1)^n - (-1)^n*(x^n - 1), x], {n, 0, 12}]
-
Maxima
create_list((-1)^n*binomial(n, k) + (-1)^n*kron_delta(0, k) - kron_delta(0, n), n, 0, 12, k, 0, max(0, n - 1)); /* Franck Maminirina Ramaharo, Nov 21 2018 */
Formula
From Franck Maminirina Ramaharo, Nov 22 2018: (Start)
T(n,k) = (-1)^n*binomial(n, k) + (-1)^n*delta(0, k) - delta(0, n), where delta is Kronecker's delta-symbol.
G.f.: (1 + 2*x*y - (1 - x - x^2)*y^2)/((1 + y)*(1 + x*y)*(1 + y + x*y)).
E.g.f.: (1 - exp(y) + exp(x*y))*exp(-(1 + x)*y). (End)
Comments