A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 1 0 3 0 1 5: 0 3 0 4 0 1 6: 1 0 6 0 5 0 1 7: 0 4 0 10 0 6 0 1 8: 1 0 10 0 15 0 7 0 1 9: 0 5 0 20 0 21 0 8 0 1 10: 1 0 15 0 35 0 28 0 9 0 1 11: 0 6 0 35 0 56 0 36 0 10 0 1 12: 1 0 21 0 70 0 84 0 45 0 11 0 1 13: 0 7 0 56 0 126 0 120 0 55 0 12 0 1 14: 1 0 28 0 126 0 210 0 165 0 66 0 13 0 1 15: 0 8 0 84 0 252 0 330 0 220 0 78 0 14 0 1 ... reformatted by _Wolfdieter Lang_, Jul 29 2014. ------------------------------------------------------------------------
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- J.-P. Allouche and M. Mendès France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From _N. J. A. Sloane_, May 10 2012
- Tom Copeland, Addendum to Elliptic Lie Triad
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Programs
-
Maple
A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc: seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
-
Mathematica
Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
-
PARI
T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016
Formula
Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
From R. J. Mathar, Feb 04 2022: (Start)
Sum_{k=0..n} T(n,k)*k = A001629(n+1).
Extensions
Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010
Comments