cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335545 A(n,k) is the sum of the k-th powers of the (positive) number of permutations of [n] with j descents (j=0..max(0,n-1)); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 1, 2, 18, 24, 5, 1, 1, 2, 66, 244, 120, 6, 1, 1, 2, 258, 2664, 5710, 720, 7, 1, 1, 2, 1026, 29284, 322650, 188908, 5040, 8, 1, 1, 2, 4098, 322104, 19888690, 55457604, 8702820, 40320, 9, 1, 1, 2, 16386, 3543124, 1276095330, 16657451236, 17484605040, 524888040, 362880, 10
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2020

Keywords

Examples

			Square array A(n,k) begins:
  1,   1,      1,        1,           1,             1, ...
  1,   1,      1,        1,           1,             1, ...
  2,   2,      2,        2,           2,             2, ...
  3,   6,     18,       66,         258,          1026, ...
  4,  24,    244,     2664,       29284,        322104, ...
  5, 120,   5710,   322650,    19888690,    1276095330, ...
  6, 720, 188908, 55457604, 16657451236, 5025377832180, ...
  ...
		

Crossrefs

Columns k=0-2 give: A028310, A000142, A168562.
Rows n=0+1, 2-3 give: A000012, A007395(k+1), A178789(k+1).
Main diagonal gives A335546.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          expand(add(b(u-j, o+j-1, 1)*x^t, j=1..u))+
                 add(b(u+j-1, o-j, 1), j=1..o))
        end:
    A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    A:= (n, k)-> add(combinat[eulerian1](n, j)^k, j=0..max(0, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    B[n_, k_] := B[n, k] = Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
    A[0, ] = 1; A[n, k_] := Sum[B[n, j]^k, {j, 0, n-1}];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)

Formula

A(n,k) = Sum_{j=0..max(0,n-1)} A173018(n,j)^k.

A177823 Triangle of Eulerian numbers squared: A008292(n,m)^2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 121, 121, 1, 1, 676, 4356, 676, 1, 1, 3249, 91204, 91204, 3249, 1, 1, 14400, 1418481, 5837056, 1418481, 14400, 1, 1, 61009, 18429849, 243953161, 243953161, 18429849, 61009, 1, 1, 252004, 213393664, 7785238756, 24395316100, 7785238756, 213393664, 252004, 1, 1, 1026169
Offset: 1

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are A168562.

Examples

			1;
1, 1;
1, 16, 1;
1, 121, 121, 1;
1, 676, 4356, 676, 1;
1, 3249, 91204, 91204, 3249, 1;
1, 14400, 1418481, 5837056, 1418481, 14400, 1;
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`;
    a = Table[Table[Eulerian[n + 1, m]^2, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

A178046 Triangle t(n, m) = 2*binomial(n,m)^2 -A008292(n+1,m+1)^2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, -103, -103, 1, 1, -644, -4284, -644, 1, 1, -3199, -91004, -91004, -3199, 1, 1, -14328, -1418031, -5836256, -1418031, -14328, 1, 1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1, 1, -251876
Offset: 0

Views

Author

Roger L. Bagula, May 18 2010

Keywords

Comments

Row sums are A028329(n) - A168562(n+1). - R. J. Mathar, Nov 05 2012

Examples

			1;
1, 1;
1, -8, 1;
1, -103, -103, 1;
1, -644, -4284, -644, 1;
1, -3199, -91004, -91004, -3199, 1;
1, -14328, -1418031, -5836256, -1418031, -14328, 1;
1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1;
1, -251876, -213392096, -7785232484, -24395306300, -7785232484, -213392096, -251876, 1;
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_] = 2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]
Showing 1-3 of 3 results.