A168592 G.f.: exp( Sum_{n>=1} A082758(n)*x^n/n ), where A082758(n) = sum of the squares of the trinomial coefficients in row n of triangle A027907.
1, 3, 14, 80, 509, 3459, 24579, 180389, 1356743, 10402493, 81004516, 638886082, 5093081983, 40971735401, 332187974718, 2711668091448, 22267979870143, 183830653156341, 1524747465249750, 12700172705956876, 106187411693668179
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 509*x^4 + 3459*x^5 + ... log(A(x)) = 3*x + 19*x^2/2 + 141*x^3/3 + 1107*x^4/4 + 8953*x^5/5 + ... + A082758(n)*x^n/n + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, add(b(x-i, y-1), i=0..x) +add(b(x-1, y-j), j=0..y))) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 07 2015 # second Maple program: a:= proc(n) option remember; `if`(n<4, [1, 3, 14, 80][n+1], ((10*(n+1))*(16*n^3-20*n^2-n-1) *a(n-1) +(-944*n^4+2596*n^3-1924*n^2+236*n+30) *a(n-2) +(90*(n-2))*(16*n^3-52*n^2+45*n-6) *a(n-3) -(81*(2*n-5))*(n-2)*(n-3)*(4*n-1) *a(n-4))/ ((n+1)*(4*n-5)*(2*n+1)*(n+2))) end: seq(a(n), n=0..25); # Alois P. Heinz, Oct 07 2015
-
Mathematica
(1/x)*InverseSeries[x*(1 - x)^2/((1 + x)^2*(1 - x + x^2)) + O[x]^30, x] // CoefficientList[#, x]& (* Jean-François Alcover, Jun 09 2018 *)
-
PARI
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sum(k=0,2*m, polcoeff((1+x+x^2)^m,k)^2)*x^m/m) +x*O(x^n)),n))}
-
PARI
{a(n)=polcoeff(1/x*serreverse(x*(1-x)^2/((1+x)^2*(1-x+x^2)+x*O(x^n))),n)}
Formula
G.f.: A(x) = (1/x)*Series_Reversion[x*(1-x)^2/((1+x)^2*(1-x+x^2))].
G.f.: A(x) satisfies A(x^2) = M(x)*M(-x), where M(x) is the g.f. of A001006. - Alexander Burstein, Oct 03 2017
G.f.: A(x) satisfies A(x^2) = (1-x - sqrt(1-2*x-3*x^2))*(1+x - sqrt(1+2*x-3*x^2))/(4*x^4). - Paul D. Hanna, Oct 05 2017, concluded from formula of Alexander Burstein.
Comments