cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360988 E.g.f. A(x) satisfies A(x) = exp(x * A(-x)^3).

Original entry on oeis.org

1, 1, -5, -44, 829, 14656, -488897, -13063616, 629051449, 22531502080, -1420908901469, -63859764079616, 4983153798630709, 269501734545522688, -25073583375908431769, -1585437525801020801024, 171326697778165116452977, 12401692280007001315999744
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-3*k+1)^(k-1)*(-3*k)^(n-k)*binomial(n, k));

Formula

a(n) = Sum_{k=0..n} (3*n - 3*k + 1)^(k-1) * (-3*k)^(n-k) * binomial(n,k).
a(0) = 1; a(n) = (-1)^(n-1) * (n-1)! * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (-1)^i * (n-i) * a(i) * a(j) * a(k) * a(l)/(i! * j! * k! * l!). - Seiichi Manyama, Jul 06 2025

A171193 G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^3).

Original entry on oeis.org

1, 1, 7, 109, 3207, 174581, 17929279, 3559607005, 1389312382199, 1075527698708485, 1658535837898129263, 5105026337441341642861, 31395991691829167745766311, 385982564381552315528268500501
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^3) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^3) ); polcoeff(A, n)}

Formula

a(n) ~ c * 2^(n*(n-1)/2) * 3^n, where c = 0.80142677004566734464115933731029720165641... - Vaclav Kotesovec, Nov 03 2021
a(0) = 1; a(n) = 2^(n-1) * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (1/2)^i * a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 06 2025

A168600 E.g.f. A(x) satisfies A(x) = exp( x*A(2*x)^2 ).

Original entry on oeis.org

1, 1, 9, 265, 19889, 3506801, 1417530745, 1302573091513, 2700478102745057, 12518436654808255585, 128568477648089286062441, 2900655737241126221237790185, 142677722979145454671155940121233, 15200178301599487957128451391538504145
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Examples

			E.g.f: A(x) = 1 + x + 9*x^2/2! + 265*x^3/3! + 19889*x^4/4! +...
		

Crossrefs

Programs

  • Maple
    F:= A -> A(x) - exp(x*A(2*x)^2):
    Extend:= proc(ff)
      local f1x, m, f2, S, R, i;
      f1x:= ff(x); m:= degree(f1x,x);
      f2:= unapply(ff(x) + add(a[i]*x^i,i=m+1..2*m+1),x);
      S:= series(F(f2),x,2*m+2);
      R:= solve(identity(convert(S,polynom),x),{seq(a[i],i=m+1..2*m+1)});
      unapply(subs(R, f2(x)),x);
    end proc:
    g:= 1:
    for iter from 1 to 5 do g:= Extend(g) od:
    seq(coeff(g(x),x,j)*j!,j=0..31); # Robert Israel, Feb 22 2019
  • Mathematica
    nmax = 13; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Exp[x A[2 x]^2] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k n!];
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(x*subst(A, x, 2*x)^2) ); n!*polcoeff(A, n)}

Formula

a(n) ~ c * n! * 2^(n*(n+1)/2), where c = 0.986274628764911276343959993... - Vaclav Kotesovec, Jul 02 2025
a(0) = 1; a(n) = 2^(n-1) * (n-1)! * Sum_{i, j, k>=0 and i+j+k=n-1} (n-i)/2^i * a(i) * a(j) * a(k)/(i! * j! * k!). - Seiichi Manyama, Jul 06 2025

A385651 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^3 ).

Original entry on oeis.org

1, 8, 640, 150272, 81879040, 97446821888, 252536538529792, 1441194498488532992, 18238881125752291459072, 511646632486244583515095040, 31662959021226253504069431721984, 4295217009165735294411016058313900032, 1268984197722535033624735101886101792489472
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (n-i) * (2^j+1) * (2^k+1) * (2^l+1) * a(i) * a(j) * a(k) * a(l)/(i! * j! * k! * l!).
Showing 1-4 of 4 results.