cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 14,   1;
  1, 21,  21,   1;
  1, 28,  42,  28,    1;
  1, 35,  70,  70,   35,    1;
  1, 42, 105, 140,  105,   42,    1;
  1, 49, 147, 245,  245,  147,   49,   1;
  1, 56, 196, 392,  490,  392,  196,  56,   1;
  1, 63, 252, 588,  882,  882,  588, 252,  63,  1;
  1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
		

Crossrefs

Columns (essentially): A008589 (k=1), A024966 (k=2).

Programs

  • Magma
    A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
    [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
    (* Second program *)
    A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
    Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
  • SageMath
    def A168622(n,k):
        if k==0 or k==n: return 1
        else: return 7*binomial(n,k)
    print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025

Formula

From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)