cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168624 a(n) = 1 - 10^n + 100^n.

Original entry on oeis.org

1, 91, 9901, 999001, 99990001, 9999900001, 999999000001, 99999990000001, 9999999900000001, 999999999000000001, 99999999990000000001, 9999999999900000000001, 999999999999000000000001, 99999999999990000000000001, 9999999999999900000000000001, 999999999999999000000000000001
Offset: 0

Views

Author

Jason Earls, Dec 01 2009

Keywords

Comments

Prime values for n = 2,4,6,8, with no others up to n = 3400. Beiler mentions this pattern in the reference.
From Peter Bala, Sep 27 2015: (Start)
Calculation suggests the continued fraction expansion of sqrt(a(n)), for n >= 1, begins [10^n - 1, 1, 1, 1/3*(2*10^n - 5), 1, 5, 1/9*(2*10^n - 11), 1, 17, (2*10^n - 20 - 9*(1 - MOD(n, 3)))/27, ...]. Note the large partial quotients early in the expansion.
A theorem of Kuzmin in the measure theory of continued fractions says that large partial quotients are the exception in continued fraction expansions. Empirically, we also see exceptionally large partial quotients in the continued fraction expansions of the m-th root of the numbers a(m*n) for m = 2, 3, 4,... as n increases. Some examples are given below. Cf. A000533, A002283, A066138. (End)

Examples

			Simple continued fraction expansions showing large partial quotients:
sqrt(a(10)) = [9999999999; 1, 1, 6666666665, 1, 5, 2222222221, 1, 17, 740740740, 1, 1, 1, 5, 2, 1, 246913579, 1, 1, 4, 1, 1, 3, 1, 1, ...].
a(18)^(1/3) = [999999999999; 1, 2999999, 499999999999, 1, 1439999, 2582644628099, 5, 1, 3, 4, 1, 58, 1, 1, 1, 8, ...].
a(30)^(1/5) = [999999999999; 1, 4999999999999999999, 333333333333, 3, 217391304347826086, 1, 1, 1, 1, 1, 8, 2398081534, 1, 1, 1, 9, 1, 98, 1, 125052522059263, 1, 9, 7, 1, ...]. - _Peter Bala_, Sep 27 2015
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 85.

Crossrefs

Programs

  • Mathematica
    Table[1-10^n+100^n,{n,0,20}] (* Harvey P. Dale, Dec 01 2013 *)
  • PARI
    Vec(-(910*x^2-20*x+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^20)) \\ Colin Barker, Sep 27 2015

Formula

From Colin Barker, Sep 27 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
G.f.: -(910*x^2-20*x+1)/((x-1)*(10*x-1)*(100*x-1)). (End)
E.g.f.: exp(x)*(exp(99*x) - exp(9*x) + 1). - Elmo R. Oliveira, Sep 12 2024