A000533 a(0)=1; a(n) = 10^n + 1, n >= 1.
1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001, 1000000000001, 10000000000001, 100000000000001, 1000000000000001, 10000000000000001
Offset: 0
Examples
The continued fraction expansion of a(9)^(1/3) begins [1000; 3000000, 1000, 4500000, 800, 5357142, 1, 6, 14, 6, 1, 5999999, 6, 1, 12, 7, 1, ...] with 5 large partial quotients immediately following the integer part of the number. - _Peter Bala_, Sep 25 2015
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- John Rafael M. Antalan, A Recreational Application of Two Integer Sequences and the Generalized Repetitious Number Puzzle, arXiv:1908.06014 [math.HO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Magma
[10^n + 1 - 0^n: n in [0..30]]; // Vincenzo Librandi, Jul 15 2011
-
Mathematica
Join[{1},LinearRecurrence[{11,-10},{11,101},20]] (* Harvey P. Dale, May 01 2014 *)
-
PARI
a(n)=if(n,10^n+1,1) \\ Charles R Greathouse IV, Oct 28 2014
Formula
a(n) = 10^n + 1 - 0^n. - Reinhard Zumkeller, Jun 10 2003
From Paul Barry, Feb 05 2005: (Start)
G.f.: (1-10*x^2)/((1-x)*(1-10*x));
a(n) = Sum_{k=0..n} binomial(n, k)*0^(k(n-k))*10^k. (End)
a(n) = A178500(n) + 1. - Reinhard Zumkeller, May 28 2010
E.g.f.: exp(x) + exp(10*x) - 1. - Ilya Gutkovskiy, Jun 03 2016
Comments