cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168643 Triangle read by rows: T(n,k) = [x^k] p(x,n) where p(x,0) = 1, p(x,n) = (6 - n)*(1+x)^n - (5-n)*(1 + x^n) for 1 <= n <= 4, and p (x,n) = 4*(1+x)^n - Sum_{i=0..2} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 5.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 9, 9, 1, 1, 8, 12, 8, 1, 1, 10, 30, 30, 10, 1, 1, 12, 45, 80, 45, 12, 1, 1, 14, 63, 140, 140, 63, 14, 1, 1, 16, 84, 224, 280, 224, 84, 16, 1, 1, 18, 108, 336, 504, 504, 336, 108, 18, 1, 1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  8,   1;
  1,  9,   9,   1;
  1,  8,  12,   8,   1;
  1, 10,  30,  30,  10,    1;
  1, 12,  45,  80,  45,   12,   1;
  1, 14,  63, 140, 140,   63,  14,   1;
  1, 16,  84, 224, 280,  224,  84,  16,   1;
  1, 18, 108, 336, 504,  504, 336, 108,  18,  1;
  1, 20, 135, 480, 840, 1008, 840, 480, 135, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, n_]:= If[n==0, 1, If[n==1, x+1, 4*(1+x)^n - (1+x^n) - If[n>2, x^n + n*x^(n-1) +n*x+1, 1+x^n] - If[n>3, x^n +n*x^(n-1) + Binomial[n,2]*(x^2 +x^(n-2)) +n*x+1, 1+x^n]]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
    (* Second program *)
    f[n_,k_]:= With[{B=Boole}, If[n==0, 1, If[0n-3]]]];
    A168643[n_,k_]:= Binomial[n,k]*f[n,k];
    Table[A168643[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2025 *)
  • Maxima
    T(n,k) := if k = 0 or k = n then 1 else (if n <= 4 then (6 - n)*binomial(n, k) else ratcoef(4*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 2), x, k))$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if n==0: return 1
        elif 0n-3)
    def A168643(n,k): return binomial(n,k)*f(n,k)
    print(flatten([[A168643(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 08 2025

Formula

From G. C. Greubel, Apr 08 2025: (Start)
T(n, k) = [k=0] + (6-n)*binomial(n,k)*[1 <= k <= n-1] + [k=n] if 1 <= n <= 4, T(n, k) = binomial(n,k)*( (k+1)*[k<3] + 4*[2 < k < n-2] + (n-k+1)*[k > n-3] ) if n >= 5, with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k) (symmetric rows).
Sum_{k=0..n} T(n, k) = 2^(n+2) - n^2 - 3*n - 6 + 13*[n=3] + 10*[n=2] + 4*[n=1] + 3*[n=0]. (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019