cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168646 Triangle read by rows: T(n,k) = [x^k] p(x,n), where p(x,0) = 1, p(x,n) = (8 - n)*(1+x)^n - (7 - n)*(1 + x^n) for 1 <= n <= 6, and p(x,n) = 6*(1+x)^n - Sum_{i=0..4} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n-j))) for n >= 7.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 15, 15, 1, 1, 16, 24, 16, 1, 1, 15, 30, 30, 15, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 63, 315, 315, 63, 14, 1, 1, 16, 84, 224, 700, 224, 84, 16, 1, 1, 18, 108, 336, 630, 630, 336, 108, 18, 1, 1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1, 1, 22, 165, 660, 1650, 2772, 2772, 1650, 660, 165, 22, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1, 12,   1;
  1, 15,  15,   1;
  1, 16,  24,  16,    1;
  1, 15,  30,  30,   15,    1;
  1, 12,  30,  40,   30,   12,    1;
  1, 14,  63, 315,  315,   63,   14,   1;
  1, 16,  84, 224,  700,  224,   84,  16,   1;
  1, 18, 108, 336,  630,  630,  336, 108,  18,  1;
  1, 20, 135, 480, 1050, 1512, 1050, 480, 135, 20, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[n_, x_]:= With[{B=Binomial}, If[n==0, 1, If[1<=n<=6, 1 + (8-n)*Sum[B[n,j]*x^j, {j, n -1}] +x^n, Sum[(j+1)*B[n,j]*x^j, {j,0,4}] +6*Sum[B[n,j]*x^j, {j,5,n-5}] + Sum[(n-j+ 1)*B[n,j]*x^j, {j,n-4,n}]]]];
    Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]]
    (* Second program *)
    f[n_, k_]:= If[k==0||k==n,1,If[1<=n<= 6 && 1<=k<=n-1, 8-n, (k+1)*Boole[k<=4] + 6*Boole[5<=k<=n-5] +(n-k+1)*Boole[n-4<=k<=n]]];
    A168646[n_, k_]:= Binomial[n,k]*f[n,k];
    Table[A168646[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2025 *)
  • Maxima
    T(n,k) := if k = 0 or k = n then 1 else (if n <= 6 then (8 - n)*binomial(n, k) else ratcoef(6*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 4), x, k))$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Jan 02 2019 */
    
  • SageMath
    def f(n,k):
        if k==0 or k==n: return 1
        elif 0n-5)
    def A168646(n,k): return binomial(n,k)*f(n,k)
    print(flatten([[A168646(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 05 2025

Formula

T(n, n-k) = T(n, k). - G. C. Greubel, Apr 05 2025

Extensions

Edited by Franck Maminirina Ramaharo, Jan 02 2019
Data values T(7,3), T(7,4), T(8,4) corrected by G. C. Greubel, Apr 05 2025