cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168657 Number of partitions of n such that the number of parts is divisible by the smallest part.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 12, 17, 25, 34, 48, 64, 87, 114, 151, 198, 258, 332, 428, 546, 695, 879, 1108, 1388, 1737, 2159, 2680, 3312, 4082, 5009, 6138, 7492, 9126, 11081, 13429, 16228, 19575, 23547, 28277, 33879, 40520, 48354, 57615, 68509, 81337, 96388, 114055
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember;
          `if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0,
          `if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+
                add(b(n-i*j, i-1, t+j), j=0..n/i))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=1..60);  # Alois P. Heinz, May 24 2012
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
    Table[Count[IntegerPartitions[n],?(Mod[Length[#],#[[-1]]]==0&)],{n,50}] (* _Harvey P. Dale, Jul 16 2025 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022

Formula

G.f.: Sum_{n>=1} Sum_{d|n} x^(n*d)/Product_{k=1..n-1}(1-x^k).
G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j^2)/Product_{k=1..i*j-1} (1-x^k). - Seiichi Manyama, Jan 21 2022
From Vaclav Kotesovec, Oct 17 2024: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 13*Pi / (2^(7/2) * 3^(3/2))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(7/2) * n^(3/2)). (End)