A168657 Number of partitions of n such that the number of parts is divisible by the smallest part.
1, 1, 2, 4, 6, 8, 12, 17, 25, 34, 48, 64, 87, 114, 151, 198, 258, 332, 428, 546, 695, 879, 1108, 1388, 1737, 2159, 2680, 3312, 4082, 5009, 6138, 7492, 9126, 11081, 13429, 16228, 19575, 23547, 28277, 33879, 40520, 48354, 57615, 68509, 81337, 96388, 114055
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..9464 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n<1, 0, `if`(i=1, 1, `if`(i<1, 0, `if`(irem(n, i)=0 and irem(t+n/i, i)=0, 1, 0)+ add(b(n-i*j, i-1, t+j), j=0..n/i)))) end: a:= n-> b(n, n, 0): seq(a(n), n=1..60); # Alois P. Heinz, May 24 2012
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n<1, 0, If[i==1, 1, If[i<1, 0, If [Mod[n, i]==0 && Mod[t+n/i, i]==0, 1, 0] + Sum[b[n-i*j, i-1, t+j], {j, 0, n/i}]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *) Table[Count[IntegerPartitions[n],?(Mod[Length[#],#[[-1]]]==0&)],{n,50}] (* _Harvey P. Dale, Jul 16 2025 *)
-
PARI
my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, sqrtint(N\i), x^(i*j^2)/prod(k=1, i*j-1, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
Formula
G.f.: Sum_{n>=1} Sum_{d|n} x^(n*d)/Product_{k=1..n-1}(1-x^k).
G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j^2)/Product_{k=1..i*j-1} (1-x^k). - Seiichi Manyama, Jan 21 2022
From Vaclav Kotesovec, Oct 17 2024: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 13*Pi / (2^(7/2) * 3^(3/2))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(7/2) * n^(3/2)). (End)