A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.
10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms.
- Eric Weisstein's World of Mathematics, Sagitta.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (37,-111,27).
Crossrefs
Programs
-
Magma
I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *) CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
{ r=0.7;dn=7;print1(round(dn/r),", ");r1=r; for (n=1,40, if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2)); ac=sqrt(ab^2-r^2); if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r); b=acos(r/ab)-z; r=r*(1-cos(b))/(1+cos(b)); dn=dn*3; print1(round(dn/r),", "); ) }
-
PARI
x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
Formula
Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023
Extensions
Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023
Comments