A169405 Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079544, 265863444556808, 1861044111897656, 13027308783283592
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
Crossrefs
Cf. A003950 (G.f.: (1+x)/(1-7*x) ).
Programs
-
Mathematica
With[{num=Total[2t^Range[31]]+t^32+1,den=Total[-6 t^Range[31]]+21t^32+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jan 27 2012 *)
-
PARI
x='x+O('x^66); /* that many terms */ Vec((1+2*sum(k=1,31,x^k)+x^32)/(1-6*sum(k=1,31,x^k)+21*x^32)) /* show terms */ /* Joerg Arndt, Jun 26 2011 */
Formula
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^32 - 6*t^31 - 6*t^30 - 6*t^29 - 6*t^28 - 6*t^27 - 6*t^26 - 6*t^25 - 6*t^24 - 6*t^23 - 6*t^22 - 6*t^21 - 6*t^20 - 6*t^19 - 6*t^18 - 6*t^17 - 6*t^16 - 6*t^15 - 6*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-6*sum(k=1..31,x^k)+21*x^32).
Comments