A169634 a(n) = 3*7^n.
3, 21, 147, 1029, 7203, 50421, 352947, 2470629, 17294403, 121060821, 847425747, 5931980229, 41523861603, 290667031221, 2034669218547, 14242684529829, 99698791708803, 697891541961621, 4885240793731347, 34196685556119429, 239376798892836003, 1675637592249852021
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Shalosh B. Ekhad and Doron Zeilberger, A Bijective Proof of Richard Stanley's Observation that the sum of the cubes of the n-th row of Stern's Diatomic array equals 3 times 7 to the power n-1, arXiv:2103.12852 [math.CO], 2021.
- Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. Also American Mathematical Monthly 127.2 (2020): 99-111.
- Index entries for linear recurrences with constant coefficients, signature (7).
Crossrefs
Programs
-
Magma
[ 3*7^n: n in [0..19] ];
-
Mathematica
3*7^Range[0, 25] (* Paolo Xausa, Jan 17 2025 *)
Formula
a(n) = 7*a(n-1) for n > 0; a(0) = 3.
G.f.: 3/(1-7*x).
Comments