cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A222444 T(n,k) = number of n X k 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

1, 3, 3, 9, 21, 9, 27, 147, 147, 27, 81, 1029, 2403, 1029, 81, 243, 7203, 39285, 39285, 7203, 243, 729, 50421, 642249, 1500183, 642249, 50421, 729, 2187, 352947, 10499787, 57289767, 57289767, 10499787, 352947, 2187, 6561, 2470629, 171655443
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2013

Keywords

Comments

1/4 the number of 4-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1..........3...............9..................27.......................81
......3.........21.............147................1029.....................7203
......9........147............2403...............39285...................642249
.....27.......1029...........39285.............1500183.................57289767
.....81.......7203..........642249............57289767...............5110723191
....243......50421........10499787..........2187822609.............455924913093
....729.....352947.......171655443.........83550197745...........40672916404629
...2187....2470629......2806303725.......3190677470643.........3628419487925547
...6561...17294403.....45878770089.....121847980727187.......323690312271131451
..19683..121060821....750047661027....4653221950068669.....28876324830999722133
..59049..847425747..12262131106083..177700725073710285...2576049100980154511889
.177147.5931980229.200467073061765.6786168386579878383.229808641254065144560647
...
Some solutions for n=3, k=4:
..0..0..0..2....0..0..2..0....0..2..0..0....0..2..0..2....0..0..2..3
..1..2..2..3....0..2..3..1....2..2..2..0....0..0..0..2....0..2..3..1
..2..2..3..1....2..0..1..3....2..2..0..0....2..0..1..3....1..2..0..1
		

Crossrefs

Columns 1-7 are A000244(n-1), A169634(n-1), A222439, A222440, A222441, A222442, A222443.
Main diagonal is A068254.
Cf. A078099 (3 colorings), A198715 (unlabeled 4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 6*A198715(n,k) - 3 for n*k>1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 7*a(n-1).
k=3: a(n) = 18*a(n-1) - 27*a(n-2).
k=4: a(n) = 45*a(n-1) - 267*a(n-2) + 263*a(n-3).
k=5: a(n) = 118*a(n-1) - 2811*a(n-2) + 22255*a(n-3) - 53860*a(n-4) - 54747*a(n-5) + 269406*a(n-6) - 175392*a(n-7).
k=6: [order 13]
k=7: [order 32]

A232955 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, and top left element zero.

Original entry on oeis.org

1, 3, 4, 9, 21, 16, 27, 129, 147, 64, 81, 771, 1881, 1029, 256, 243, 4629, 22971, 27441, 7203, 1024, 729, 27771, 283131, 685251, 400329, 50421, 4096, 2187, 166629, 3484893, 17429409, 20442651, 5840289, 352947, 16384, 6561, 999771, 42904365, 442227825
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2013

Keywords

Comments

Table starts
......1.........3............9..............27.................81
......4........21..........129.............771...............4629
.....16.......147.........1881...........22971.............283131
.....64......1029........27441..........685251...........17429409
....256......7203.......400329........20442651.........1074244299
...1024.....50421......5840289.......609853251........66226131273
...4096....352947.....85202361.....18193384251......4082986991091
..16384...2470629...1242993681....542752261251....251727862281441
..65536..17294403..18133691049..16191600916251..15519780149309307
.262144.121060821.264547403649.483034266181251.956841601733733945

Examples

			Some solutions for n=3 k=4
..0..2..3..2....0..1..3..3....0..1..0..2....0..1..0..0....0..2..0..2
..2..2..3..3....0..1..1..1....3..2..0..1....0..2..0..0....2..0..2..2
..0..2..3..3....0..1..0..0....2..2..3..2....0..2..0..2....1..0..2..0
		

Crossrefs

Column 1 is A000302(n-1)
Column 2 is A169634(n-1)
Row 1 is A000244(n-1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 7*a(n-1)
k=3: a(n) = 15*a(n-1) -6*a(n-2)
k=4: a(n) = 31*a(n-1) -35*a(n-2) +5*a(n-3)
k=5: [order 10]
k=6: [order 21]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) +6*a(n-2)
n=3: a(n) = 12*a(n-1) +7*a(n-2) -40*a(n-3) +12*a(n-4)
n=4: [order 10]
n=5: [order 26] for n>27
n=6: [order 86] for n>87

A169604 a(n) = 3*6^n.

Original entry on oeis.org

3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568, 394865111526801408
Offset: 0

Views

Author

Klaus Brockhaus, Apr 04 2010

Keywords

Comments

a(n) = A081341(n+1).
Essentially first differences of A125682.
Binomial transform of A005053 without initial term 1.
Second binomial transform of A164346.
Inverse binomial transform of A169634.
Second inverse binomial transform of A103333 without initial term 1.
Contribution from Reinhard Zumkeller, May 02 2010: (Start)
a(n) = 3*A000400(n) = A000400(n+1)/2;
subsequence of A003586; a(n)=A003586(A014105(n)) for n<6. (End)

Crossrefs

Cf. A081341, A125682 ((6^n-1)*3/5), A005053 (expand (1-2x)/(1-5x)), A164346 (3*4^n), A169634 (3*7^n), A103333 (expand (1-5x)/(1-8x)).

Programs

Formula

a(n) = 6*a(n-1) for n > 0; a(0) = 3.
G.f.: 3/(1-6*x).

A217983 If n = floor(p/2) * p^e, for some (by necessity unique) prime p and exponent e > 0, then a(n) = p, otherwise a(n) = 1.

Original entry on oeis.org

1, 2, 3, 2, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 25 2012

Keywords

Comments

a(A130290(n) * A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n) = 1 elsewhere. - The original name of the sequence.
The a(n) are related to the prime numbers A000040 and the number of nonzero quadratic residues modulo the n-th prime A130290, see the first formula and the Maple program.
This sequence resembles the exponential of the von Mangoldt function A014963; for the latter sequence a(A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n) = 1 elsewhere.
Positions of the first occurrence of each successive noncomposite number (and also the records) is given by the union of {2} and A008837. - Antti Karttunen, Jan 17 2025

Crossrefs

Cf. A000079, A000244 (after their initial 1's, the positions of 2's and 3's respectively), A020699 (positions of 5's from its third term 10 onward), A169634 (positions of 7's from the second term onward), A379956 (positions of terms > 1).

Programs

  • Maple
    nmax := 78: A000040 := proc(n): ithprime(n) end: A130290 := proc(n): if n =1 then 1 else (A000040(n)-1)/2 fi: end: for n from 1 to nmax do A217983(n) := 1 od: for n from 1 to nmax do for n1 from 1 to floor(log[A000040(n)](nmax)) do A217983(A130290(n) * A000040(n)^n1) := A000040(n) od: od: seq(A217983(n), n=1..nmax);
  • PARI
    A217983(n) = { my(f=factor(n)); for(i=1,#f~,if((n/(f[i,1]^f[i,2])) == (f[i,1]\2), return(f[i,1]))); (1); }; \\ Antti Karttunen, Jan 16 2025

Formula

a(A130290(n) * A000040(n)^n1) = A000040(n), n >= 1 and n1 >= 1, and a(n)= 1 elsewhere.
a(n) = (A160479(n+1) * A128060(n+1))/(2*n+1) for n >= 2.

Extensions

Definition simplified, original definition moved to comments; more terms added by Antti Karttunen, Jan 16 2025

A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A005032.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the larger sagitta has length 7/5. The input, besides the unit circle C, is the circle C_0 with radius R_0 = 7/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n).
If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 3/5), the rational sequence would be A249458/A169634. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the larger segment see a comment under A249862. C_n = (5/7)*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 07 2014

Crossrefs

Programs

  • Magma
    I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023

Extensions

Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023

A193577 a(n) = 5*7^n.

Original entry on oeis.org

5, 35, 245, 1715, 12005, 84035, 588245, 4117715, 28824005, 201768035, 1412376245, 9886633715, 69206436005, 484445052035, 3391115364245, 23737807549715, 166164652848005, 1163152569936035, 8142067989552245, 56994475926865715
Offset: 0

Views

Author

Vincenzo Librandi, Sep 15 2011

Keywords

Crossrefs

Programs

  • Magma
    [5*7^n: n in [0..20]];
  • Mathematica
    5 7^Range[0,20] (* or *) NestList[7#&,5,20] (* Harvey P. Dale, Dec 10 2017 *)

Formula

G.f.: 5/(1-7*x).
a(n) = 7*a(n-1), a(0)=5.

A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A169634.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the smaller sagitta has length 3/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 3/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 7/5), the sequence would be A249457/A005032. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the smaller segment see a comment under A249864. C_n = (5/(3*7))*(7*S(n, 26/7) - 13*S(n-1, 26/7) + 7), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 08 2014

Crossrefs

Programs

  • Magma
    I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)

Extensions

Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014

A193726 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(x+2)^n.

Original entry on oeis.org

1, 1, 2, 2, 9, 10, 4, 28, 65, 50, 8, 76, 270, 425, 250, 16, 192, 920, 2200, 2625, 1250, 32, 464, 2800, 9000, 16250, 15625, 6250, 64, 1088, 7920, 32000, 77500, 112500, 90625, 31250, 128, 2496, 21280, 103600, 315000, 612500, 743750, 515625, 156250
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (2,3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   1,   2;
   2,   9,  10;
   4,  28,  65,   50;
   8,  76, 270,  425,  250;
  16, 192, 920, 2200, 2625, 1250;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193726
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return 2*T(n-1, k) + 5*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 1; b = 2; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193726 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193727 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 2*T[n-1, k] + 5*T[n -1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
  • SageMath
    def T(n, k): # T = A193726
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return 2*T(n-1, k) + 5*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023

Formula

T(n,k) = 5*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-x-3*x*y)/(1-2*x-5*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A011782(n).
T(n, n) = A020699(n).
T(n, n-1) = A081040(n-1).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n*A133494(n) = -A141413(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002532(n) + 2*A002532(n-1) + (3/5)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A045873(n) - 2*A045873(n-1) + (3/5)*[n=0]. (End)

A193727 Mirror of the triangle A193726.

Original entry on oeis.org

1, 2, 1, 10, 9, 2, 50, 65, 28, 4, 250, 425, 270, 76, 8, 1250, 2625, 2200, 920, 192, 16, 6250, 15625, 16250, 9000, 2800, 464, 32, 31250, 90625, 112500, 77500, 32000, 7920, 1088, 64, 156250, 515625, 743750, 612500, 315000, 103600, 21280, 2496, 128
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

This triangle is obtained by reversing the rows of the triangle A193726.
Triangle T(n,k), read by rows, given by (2,3,0,0,0,0,0,0,0,...) DELTA (1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
     1;
     2,    1;
    10,    9,    2;
    50,   65,   28,   4;
   250,  425,  270,  76,   8;
  1250, 2625, 2200, 920, 192; 16;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193727
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return n-k+1;
      else return 5*T(n-1, k) + 2*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 1; b = 2; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193726 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193727 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 5*T[n-1, k] + 2*T[n-1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
  • SageMath
    def T(n, k): # T = A193727
        if (k<0 or k>n): return 0
        elif (n<2): return n-k+1
        else: return 5*T(n-1, k) + 2*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023

Formula

T(n,k) = A193726(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 5*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-3*x-x*y)/(1-5*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A020699(n).
T(n, 1) = A081040(n-1).
T(n, n) = A011782(n).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = A133494(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = 2*A015535(n) + A015535(n-1) + (1/2)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = 2*A107839(n-1) - A107839(n-2) + (1/2)*[n=0]. (End)

A270471 Expansion of g.f. (1-3*x)/(1-7*x).

Original entry on oeis.org

1, 4, 28, 196, 1372, 9604, 67228, 470596, 3294172, 23059204, 161414428, 1129900996, 7909306972, 55365148804, 387556041628, 2712892291396, 18990246039772, 132931722278404, 930522055948828, 6513654391641796, 45595580741492572, 319169065190448004, 2234183456333136028
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Comments

After 1, is this A208704?

Crossrefs

Cf. A208704.
Cf. A000420 (powers of 7), A083076 (partial sums).
Cf. A193577: (1-2*x)/(1-7*x); A169634: (1-4*x)/(1-7*x).

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x)/(1 - 7 x), {x, 0, 21}], x] (* Michael De Vlieger, Mar 18 2016 *)
    Join[{1},NestList[7#&,4,20]] (* Harvey P. Dale, Dec 21 2019 *)
  • PARI
    Vec((1-3*x)/(1-7*x) + O(x^30))

Formula

G.f.: (1-3*x)/(1-7*x).
a(n) = 7*a(n-1) for n>1.
a(n) = 4*7^(n-1) for n>0.
E.g.f.: (4*exp(7*x) + 3)/7. - Elmo R. Oliveira, Mar 25 2025
Showing 1-10 of 12 results. Next