cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000787 Strobogrammatic numbers: the same upside down.

Original entry on oeis.org

0, 1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001, 1111, 1691, 1881, 1961, 6009, 6119, 6699, 6889, 6969, 8008, 8118, 8698, 8888, 8968, 9006, 9116, 9696, 9886, 9966, 10001, 10101, 10801, 11011, 11111, 11811, 16091, 16191
Offset: 1

Views

Author

Keywords

Comments

Strobogrammatic numbers are a kind of ambigrams that retain the same meaning when viewed upside down. - Daniel Mondot, Sep 27 2016
"Upside down" here means rotated by 180 degrees (i.e., central symmetry), NOT "vertically flipped" (symmetry w.r.t. horizontal line, which are in A045574). - M. F. Hasler, May 04 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007597 (Primes in this sequence), A057770, A111065, A169731 (another version).
Subsequence of A045574. - M. F. Hasler, May 04 2012

Programs

  • Mathematica
    fQ[n_] := Block[{s = {0, 1, 6, 8, 9}, id = IntegerDigits[n]}, If[ Union[ Join[s, id]] == s && (id /. {6 -> 9, 9 -> 6}) == Reverse[id], True, False]]; Select[ Range[0, 16190], fQ[ # ] &] (* Robert G. Wilson v, Oct 11 2005 *)
  • Python
    from itertools import count, islice, product
    def ud(s): return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')})
    def agen():
        yield from [0, 1, 8]
        for d in count(2):
            for start in "1689":
                for rest in product("01689", repeat=d//2-1):
                    left = start + "".join(rest)
                    right = ud(left)
                    for mid in [[""], ["0", "1", "8"]][d%2]:
                        yield int(left + mid + right)
    print(list(islice(agen(), 47))) # Michael S. Branicky, Mar 29 2022

Extensions

More terms from Robert G. Wilson v, Oct 11 2005

A246880 6*((10^n-1)/9)*(10^(n+1))+9*(10^n-1)/9.

Original entry on oeis.org

0, 609, 66099, 6660999, 666609999, 66666099999, 6666660999999, 666666609999999, 66666666099999999, 6666666660999999999, 666666666609999999999, 66666666666099999999999, 6666666666660999999999999, 666666666666609999999999999, 66666666666666099999999999999
Offset: 0

Views

Author

Felix Fröhlich, Sep 06 2014

Keywords

Comments

Numbers of the form 6...609...9 (i.e., consisting of an odd number of digits with the middle digit 0, all digits to the left of the middle digit 6 and all digits to the right of the middle digit 9).

Crossrefs

Programs

  • Magma
    [(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9) : n in [0..15]]; // Wesley Ivan Hurt, Sep 15 2014
  • Maple
    A246880:=n->(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9): seq(A246880(n),n=0..15); # Wesley Ivan Hurt, Sep 15 2014
  • Mathematica
    Table[(6*((10^n - 1)/9))*(10^(n + 1)) + (9*(10^n - 1)/9), {n, 15}] (* Wesley Ivan Hurt, Sep 15 2014 *)
    Join[{0}, CoefficientList[Series[20/(3 x - 300 x^2) + 1/(x^2 - x) + 17/(30 x^2 - 3 x), {x, 0, 30}], x]] (* Wesley Ivan Hurt, Sep 15 2014 *)
  • PARI
    a(n)=6*((10^n-1)/9)*(10^(n+1))+9*(10^n-1)/9
    

Formula

G.f.: 20/(3-300*x)+1/(x-1)+17/(30*x-3); a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3). - Wesley Ivan Hurt, Sep 15 2014

A287092 Strobogrammatic nonpalindromic numbers.

Original entry on oeis.org

69, 96, 609, 619, 689, 906, 916, 986, 1691, 1961, 6009, 6119, 6699, 6889, 6969, 8698, 8968, 9006, 9116, 9696, 9886, 9966, 16091, 16191, 16891, 19061, 19161, 19861, 60009, 60109, 60809, 61019, 61119, 61819, 66099, 66199, 66899, 68089, 68189, 68889, 69069, 69169, 69869, 86098, 86198, 86898, 89068, 89168
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

Nonpalindromic numbers which are invariant under a 180-degree rotation.
Numbers that are the same upside down and containing digits 6, 9.
Intersection of A000787 and A029742.
Union of this sequence and A006072 gives A000787.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{s = {0, 1, 6, 8, 9}, id = IntegerDigits[n]}, If[ Union[ Join[s, id]] == s && (id /. {6 -> 9, 9 -> 6}) == Reverse[id], True, False]]; Select[ Range[0, 89168], fQ[ # ] && ! PalindromeQ[ # ] &]
Showing 1-3 of 3 results.