cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169764 Number of closed Knight's tours on a 3 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 176, 0, 1536, 0, 15424, 0, 147728, 0, 1448416, 0, 14060048, 0, 136947616, 0, 1332257856, 0, 12965578752, 0, 126169362176, 0, 1227776129152, 0, 11947846468608, 0, 116266505653888, 0, 1131418872918784, 0, 11010065269439104, 0, 107141489725900544
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010

Keywords

Comments

a(2n) = A070030(n), a(2n+1) = 0.
A070030 is the main entry for this sequence. See that entry for much more information.

References

  • D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(16*z^10 +80*z^12 -544*z^14 -1856*z^16 +8080*z^18 +9856*z^20 -50864*z^22 -64*z^24 +152576*z^26 -130816*z^28 -214272*z^30 +245760*z^32 +222208*z^34 +44544*z^36 -53248*z^38 -352256*z^40 +81920*z^42 +32768*z^44) / (1 -6*z^2 -64*z^4 +200*z^6 +1000*z^8 -3016*z^10 -3488*z^12 +24256*z^14 -23776*z^16 -104168*z^18 +203408*z^20 +184704*z^22 -443392*z^24 -14336*z^26 +151296*z^28 -145920*z^30 +263424*z^32 -317440*z^34 -36864*z^36 +966656*z^38 -573440*z^40 -131072*z^42), {z,0,50}], z] (* Harvey P. Dale, Feb 12 2013 *)

Formula

Asymptotic value .0001899*3.11949^n when n is even.
Generating function: (16*z^10 + 80*z^12 - 544*z^14 - 1856*z^16 + 8080*z^18 + 9856*z^20 - 50864*z^22 - 64*z^24 + 152576*z^26 - 130816*z^28 - 214272*z^30 + 245760*z^32 + 222208*z^34 + 44544*z^36 - 53248*z^38 - 352256*z^40 + 81920*z^42 + 32768*z^44)/(1 - 6*z^2 - 64*z^4 + 200*z^6 + 1000*z^8 - 3016*z^10 - 3488*z^12 + 24256*z^14 - 23776*z^16 - 104168*z^18 + 203408*z^20 + 184704*z^22 - 443392*z^24 - 14336*z^26 + 151296*z^28 - 145920*z^30 + 263424*z^32 - 317440*z^34 - 36864*z^36 + 966656*z^38 - 573440*z^40 - 131072*z^42).