A169793 Expansion of ((1-x)/(1-2*x))^6.
1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, 68889600, 170065920, 416071680, 1009582080, 2431254528, 5814222848, 13815054336, 32629850112, 76640681984, 179080003584, 416412598272, 963876225024
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Index entries for linear recurrences with constant coefficients, signature (12,-60,160,-240,192,-64).
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^6)); // G. C. Greubel, Oct 16 2018 -
Maple
seq(coeff(series(((1-x)/(1-2*x))^6,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
-
Mathematica
CoefficientList[Series[((1 - x)/(1 - 2 x))^6, {x, 0, 27}], x] (* Michael De Vlieger, Oct 15 2018 *)
-
PARI
x='x+O('x^30); Vec(((1-x)/(1-2*x))^6) \\ G. C. Greubel, Oct 16 2018
Formula
G.f.: ((1-x)/(1-2*x))^6.
For n > 0, a(n) = 2^(n-9)*(n+7)*(n^4 + 38*n^3 + 419*n^2 + 1342*n + 1080)/15. - Bruno Berselli, Aug 07 2011
Comments