A169803 Triangle read by rows: T(n,k) = binomial(n+1-k,k) (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 3, 0, 0, 1, 5, 6, 1, 0, 0, 1, 6, 10, 4, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 0, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0, 1, 12, 55, 120, 126, 56, 7, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: [1] [1, 1] [1, 2, 0] [1, 3, 1, 0] [1, 4, 3, 0, 0] [1, 5, 6, 1, 0, 0] [1, 6, 10, 4, 0, 0, 0] [1, 7, 15, 10, 1, 0, 0, 0] [1, 8, 21, 20, 5, 0, 0, 0, 0] [1, 9, 28, 35, 15, 1, 0, 0, 0, 0] [1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0] [1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0] [1, 12, 55, 120, 126, 56, 7, 0, 0, 0, 0, 0, 0] [1, 13, 66, 165, 210, 126, 28, 1, 0, 0, 0, 0, 0, 0] [1, 14, 78, 220, 330, 252, 84, 8, 0, 0, 0, 0, 0, 0, 0] [1, 15, 91, 286, 495, 462, 210, 36, 1, 0, 0, 0, 0, 0, 0, 0] [1, 16, 105, 364, 715, 792, 462, 120, 9, 0, 0, 0, 0, 0, 0, 0, 0] [1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 0, 0, 0, 0, 0, 0, 0, 0] [1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0] [1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ...
Links
- Indranil Ghosh, Rows 0..125, flattened
- Pantelis A. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Emanuele Munarini and Norma Zagaglia Salvi, Scattered Subsets, Discrete Mathematics 267 (2003), 213-228.
- Emanuele. Munarini and Norma Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
- Emanuele Munarini, A combinatorial interpretation of the Chebyshev polynomials, SIAM Journal on Discrete Mathematics, Volume 20, Issue 3 (2006), 649-655.
- Peter J. Olver, The canonical contact form.
- James J. Y. Zhao, Infinite log-concavity and higher order TurĂ¡n inequality for Speyer's g-polynomial of uniform matroids, arXiv:2409.08085 [math.CO], 2024. See p. 11.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:= Binomial[n+1-k,k]; Table[T[n,k],{n,0,12},{k,0,n}]//Flatten (* Stefano Spezia, Sep 16 2024 *)
-
Maxima
create_list(binomial(n-k+1,k),n,0,20,k,0,n); /* Emanuele Munarini, May 24 2011 */
-
PARI
T(n,k)=binomial(n+1-k,k) \\ Charles R Greathouse IV, Oct 24 2012
Comments