cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A169954 Maximal entry in row n of triangle in A169950.

Original entry on oeis.org

1, 1, 2, 5, 8, 13, 20, 45, 86, 184, 332, 657, 1144, 2279, 4460, 9441, 17834, 35564, 64502, 123022, 243534, 511428, 981356, 1979789, 3705156, 7232134, 13723662, 28745041, 55900110, 113564645
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Crossrefs

Related to thickness: A169940-A169954, A061909.

Formula

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Extensions

A-number typo in definition corrected - R. J. Mathar, Sep 28 2010
a(16)-a(29) from Nathaniel Johnston, Nov 15 2010

A169952 Second entry in row n of triangle in A169950.

Original entry on oeis.org

1, 2, 5, 8, 13, 20, 33, 48, 75, 100, 145, 204, 293, 396, 559, 746, 1027, 1340, 1809, 2342, 3177, 4050, 5369, 6920, 9013, 11360, 14837, 18718, 24081, 29952, 38219, 47662, 60549, 74618, 93847, 115960, 145319, 177548, 221675, 270334, 335123, 406290, 500915
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

Formula

a(n) = A169947(n) - A169947(n-1) for n>1. - Andrew Howroyd, Jul 09 2017

Extensions

a(16)-a(29) from Nathaniel Johnston, Nov 15 2010
Terms a(30) and beyond from Andrew Howroyd, Jul 09 2017

A169953 Third entry in row n of triangle in A169950.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 44, 64, 117, 173, 262, 374, 571, 791, 1188, 1644, 2355, 3205, 4552, 5980, 8283, 10925, 14702, 19338, 26031, 33581, 44690, 57566, 75531, 96531, 125738, 158690, 204953, 258325, 329394, 412054, 523931, 649973, 822434, 1018332, 1274909
Offset: 2

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Comments

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

Crossrefs

Related to thickness: A169940-A169954, A061909.

Programs

  • Mathematica
    b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]];
    A196723[n_] := A196723[n] = b[n - 1, {n}] + If[n == 0, 0, A196723[n - 1]]; c[n_, s_] := c[n, s] = Module[{sn, m}, If[n < 1, 1, sn = Append[s, n]; m = Length[sn]; If[m*(m - 1)/2 == Length[Table[sn[[i]] - sn[[j]], {i, 1, m - 1}, {j, i + 1, m}] // Flatten // Union], c[n-1, sn], 0] + c[n-1, s]]];
    A143823[n_] := A143823[n] = c[n - 1, {n}] + If[n == 0, 0, A143823[n - 1]];
    a[n_] := A196723[n+1] - A196723[n] - A143823[n+1] + A143823[n];
    Table[Print[n, " ", a[n]]; a[n], {n, 2, 42}] (* Jean-François Alcover, Sep 07 2019, after Alois P. Heinz in A196723 and A143823 *)

Formula

a(n) = A169948(n)-A169948(n-1) for n>2. - Andrew Howroyd, Jul 09 2017

Extensions

a(15)-a(28) and definition corrected by Nathaniel Johnston, Nov 15 2010
Offset corrected and a(30)-a(42) from Andrew Howroyd, Jul 09 2017

A169951 Triangle read by rows: A169950 with rows reversed.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 4, 8, 1, 1, 1, 8, 8, 13, 1, 1, 2, 7, 18, 15, 20, 1, 1, 1, 11, 13, 45, 23, 33, 1, 1, 2, 10, 28, 36, 86, 44, 48, 1, 1, 1, 14, 18, 84, 70, 184, 64, 75, 1, 1, 2, 13, 36, 68, 188, 166, 332, 117, 100, 1, 1, 1, 17, 23, 132, 134, 482, 282, 657
Offset: 0

Views

Author

N. J. A. Sloane, Aug 01 2010

Keywords

Examples

			Triangle begins:
[1]
[1, 1]
[1, 2, 1]
[1, 1, 5, 1]
[1, 2, 4, 8, 1]
[1, 1, 8, 8, 13, 1]
[1, 2, 7, 18, 15, 20, 1]
[1, 1, 11, 13, 45, 23, 33, 1]
[1, 2, 10, 28, 36, 86, 44, 48, 1]
[1, 1, 14, 18, 84, 70, 184, 64, 75, 1]
[1, 2, 13, 36, 68, 188, 166, 332, 117, 100, 1]
[1, 1, 17, 23, 132, 134, 482, 282, 657, 173, 145, 1]
[1, 2, 16, 44, 109, 316, 396, 1000, 601, 1144, 262, 204, 1]
[1, 1, 20, 28, 187, 221, 924, 742, 2279, 1035, 2086, 374, 293, 1]
[1, 2, 19, 52, 159, 478, 749, 2090, 1895, 4460, 2077, 3434, 571, 396, 1]
[1, 1, 23, 33, 251, 327, 1561, 1469, 5403, 3463, 9441, 3397, 6047, 791, 559, 1]
...
		

Crossrefs

Related to thickness: A169940-A169954, A061909.

Formula

Wanted: a recurrence. Are any of A169940-A169954 related to any other entries in the OEIS?

A274036 a(n) is the thickness of n (see Comments section for definition).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 3, 4, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 4, 3, 3, 4, 5, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 4, 3, 4, 2, 2, 2, 4, 2, 3, 4, 4, 3, 3, 3, 4, 4, 4, 5, 6, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 4, 2, 2, 2, 2, 3, 4, 3, 4, 2, 3, 4, 4, 3, 5, 4, 5, 2, 2, 2, 4, 2
Offset: 0

Views

Author

Gheorghe Coserea, Jun 07 2016

Keywords

Comments

Let b_k..b_0 be the binary representation of n and B_n(x) = b_k*x^k + .. + b_0 the associated polynomial with n = B_n(2); we define the thickness of n to be the thickness of B_n, i.e., the magnitude of the largest coefficient in the expansion of B_n(x)^2 (see A169950).
The thickness histogram for numbers in the interval I_n = [2^n, 2^(n+1)-1] is given by row n of triangle A169950, i.e., A169950(n,k) = card {p, p in I_n and a(p) = k}.
In general a(n) <= A000120(n), with equality only if in base-2 n becomes a palindrome after trailing 0's (if any) are omitted, i.e., n = A057890(k) for some k; the number of such numbers in I_n having binary weight (and thickness) w is given by A207974(n,w-1), i.e., A207974(n,w-1) = card {k, A057890(k) in I_n and A000120(A057890(k)) = w}; the total number of these numbers in the interval I_n is given by A027383(n), i.e., card {p, p in I_n and a(p) = A000120(p)} = A027383(n) = 2^floor((n+2)/2) + 2^floor((n+1)/2) - 2.

Examples

			For n = 3 we have the base-2 representation 11, the associated polynomial B_3(x) = x + 1, B_3(x)^2 = x^2 + 2*x + 1 and the magnitude of the largest coefficient in the expansion of B_3(x)^2 is 2, therefore a(3) = 2.
For n = 4 we have the base-2 representation 100, the associated polynomial B_4(x) = x^2, B_4(x)^2 = x^4 and the magnitude of the largest coefficient in the expansion of B_4(x)^2 is 1, therefore a(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Max@ CoefficientList[#, x] &[SeriesData[x, 0, #, 0, Length@ #, 1]^2] &@ Reverse@ IntegerDigits[n, 2], {n, 120}] (* Michael De Vlieger, Jun 08 2016 *)
  • PARI
    a(n) = my(pol = Pol(binary(n))); return(vecmax(Vec(sqr(pol))));
    concat(0, vector(100, n, a(n)))
    
  • PARI
    bitrev(n) = subst(Pol(Vecrev(binary(n>>valuation(n,2))), 'x), 'x, 2);
    a(n) = {
      my(e = logint(n, 2), r = bitrev(n) << e, v = vector(2*e+1));
      for (i = 1, #v, v[i] = hammingweight(bitand(r, n)); r >>= 1);
      return(vecmax(v));
    };
    concat(0, vector(100, n, a(n)))

Formula

a(n) <= A000120(n), with equality iff n = A057890(k).

A344036 Number of degree n polynomials f(x) with coefficients 0 or 1 with the property that the thickness of x*f(x)+1 is greater than the thickness of f(x).

Original entry on oeis.org

1, 2, 2, 5, 8, 20, 30, 69, 115, 270, 459, 1036, 1754, 4027, 6812, 15447, 26770, 60187, 105107, 234944, 413964, 921296, 1633724, 3610032, 6458525, 14220580, 25556634, 56006901, 101271220, 220941515, 401379967, 872910068, 1592208078, 3452735767, 6321260916, 13659455014
Offset: 0

Views

Author

Peter Kagey, Jun 16 2021

Keywords

Comments

The thickness of a polynomial f(x) is the magnitude of the largest coefficient in the expansion of f(x)^2.
Is the limit a(n)/2^(n-1) defined? Is the limit nonzero?

Examples

			For n = 3, there are a(3) = 5 such polynomials:
f(x)              | th(f(x)) | th(x*f(x)+1)
------------------+----------+-------------
1 + x + x^2 + x^3 | 4        | 5
1     + x^2 + x^3 | 2        | 4
1 + x       + x^3 | 2        | 3
    x       + x^3 | 2        | 3
              x^3 | 1        | 2
		

Crossrefs

Cf. A169950.

Extensions

Offset corrected and more terms added by Martin Ehrenstein, Jun 19 2021
Showing 1-6 of 6 results.