A169969 Locations of row maxima in "crushed" version of Stern's diatomic array.
1, 3, 5, 7, 11, 13, 21, 27, 43, 53, 85, 107, 171, 213, 341, 427, 683, 853, 1365, 1707, 2731, 3413, 5461, 6827, 10923, 13653, 21845, 27307, 43691, 54613, 87381, 109227, 174763, 218453, 349525, 436907, 699051, 873813, 1398101, 1747627, 2796203, 3495253, 5592405
Offset: 1
Examples
G.f. = x + 3*x^2 + 5*x^3 + 7*x^4 + 11*x^5 + 13*x^6 + 21*x^7 + 27*x^8 + 43*x^9 + ...
Links
- S. Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, 117 (2010), 581-598.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2).
Programs
-
Mathematica
a[n_] := a[n] = If[n <= 5, {1, 3, 5, 7, 11}[[n]], a[n-2] + 2a[n-4]]; Array[a, 42] (* Jean-François Alcover, Dec 11 2016 *)
-
PARI
fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b; \\ from A002487 lista(nn) = {nb = 2^(nn+1)-1; vall = vector(nb, n, fusc(n)); for (n=1, nn, vmax = 0; for (j=2^(n-1), 2^n-1, if (vall[j] > vmax, vmax = vall[j]);); for (j=2^(n-1), 2^n-1, if (vall[j] == vmax, print1(j, ", "));););} \\ Michel Marcus, Jan 22 2015
Formula
a(2n+1) + a(2n+2) = 3*2^(n+1), n>0 . - Yosu Yurramendi, Jun 29 2016
a(2n+3) = 3*2^(n+1) - a(n); a(2n+4) = 3*2^(n+1) + a(n), n>=0, a(0)=0 (new term), a(1)=1, a(2)=3 . - Yosu Yurramendi, Jun 29 2016
G.f.: x*(1 + 3*x + 4*x^2 + 4*x^3 + 4*x^4)/((1 + x^2)*(1 - 2*x^2)). - Ilya Gutkovskiy, Jun 29 2016
For n>1, a(n) = (2^(n/2 - 1)*(5 + 4*sqrt(2) + (-1)^n*(5 - 4*sqrt(2))) + cos(Pi*n/2) + sin(Pi*n/2))/3. - Vaclav Kotesovec, Jun 30 2016
a(2n) = a(2n-7) + 3*2^(n-1); a(2n-1) = a(2n-7) - 3*2^(n-1), n>=5 . - Yosu Yurramendi, Jul 06 2016
a(2n-1) = A168642(n), n>0; a(2n) = A048573(n), n>0; a(2n-1) = A026644(n) + 1, n>1; a(2n) = A084170(n) + 1, n>0 . - Yosu Yurramendi, Dec 11 2016
Extensions
More terms from Michel Marcus, Jan 22 2015
Comments