cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175432 a(n) = the greatest number k such that sigma(n) = m^k for any m >= 1 (sigma = A000203).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2010

Keywords

Comments

a(A175431(n)) = 1 for n >= 1.
a(A065496(n)) > 1 for n >= 1.
It appears that the record values in this sequence, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, ..., is A180221 with a 1 prepended, at least through term #469. Is this a theorem? - Ray Chandler, Aug 20 2010

Examples

			For n = 7, a(7) = 3 because sigma(7) = 8 = 2^3.
		

Crossrefs

For locations of records see A169981.

Programs

Formula

a(n) = A052409(A000203(n)). - N. J. A. Sloane, Aug 19 2010
a(n) = log_A175433(n) [A000203(n)].

A180162 a(n) is the smallest number N such that sigma(N) is an n-th power but not a higher power, with a(n) = 0 if no such number exists.

Original entry on oeis.org

1, 2, 3, 7, 510, 21, 17490, 93, 217, 381, 651, 118879530, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429
Offset: 0

Views

Author

Walter Kehowski, Aug 14 2010, Aug 19 2010

Keywords

Examples

			a(4)=510 since 510=2*3*5*17, sigma(510)=2^4*3^4.
a(11)=2*3*5*7*11*53*971=118879530 since sigma(118879530)=6^11.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    egcd:=proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z-> z[2],L); igcd(op(L)) else 0 fi end:
    P:={}: SP:={}:
    for w to 1 do
    for n from 1 to 12^6 do
    sn:=sigma(n);
    esn:=egcd(sn);
    if not esn in P then
    P:=P union {esn};
    SP:=SP union {[esn,n]};
    printf("n=%d, esn=%d, sn=...\n",n,esn);
    print(ifactor(sn));
    fi;
    od; #n
    od; #w
    P; SP;

Formula

a(n) >= A063869(n). - R. J. Mathar, Aug 20 2010

Extensions

a(11) found by Walter Kehowski and Artur Jasinski, Aug 16 2010
Edited by N. J. A. Sloane, Aug 19 2010
a(23) onwards from Ray Chandler, Aug 19 2010
Showing 1-2 of 2 results.