cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A169981 Positions of records in A175432.

Original entry on oeis.org

1, 3, 7, 21, 93, 217, 381, 651, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1

Views

Author

N. J. A. Sloane, Aug 19 2010

Keywords

Extensions

Extended by Ray Chandler, Aug 20 2010

A065496 Numbers n such that sigma(n) is a nontrivial power, i.e., sigma(n) = a^b where a and b are greater than 1.

Original entry on oeis.org

3, 7, 21, 22, 31, 66, 70, 81, 93, 94, 102, 110, 115, 119, 127, 142, 159, 170, 187, 210, 214, 217, 265, 282, 310, 322, 343, 345, 357, 364, 381, 382, 385, 400, 472, 497, 510, 517, 527, 642, 651, 679, 690, 710, 714, 742, 745, 770, 782, 795, 820, 862, 884, 889
Offset: 1

Views

Author

Joseph L. Pe, Nov 24 2001

Keywords

Comments

Probably an unsolved problem: what numbers can appear as bases in the representations of sigma(n) as nontrivial powers?
A175432(a(n)) > 1 for n >= 1. - Jaroslav Krizek, May 10 2010

Examples

			sigma(21) = 2^5, sigma(22) = 6^2, sigma(94) = 12^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s = DivisorSigma[1, n]; If[ Position[ Union[ Transpose[ FactorInteger[s]] [[2]]], 1] != {{1}} && Union[ Mod[ Union[ Transpose[ FactorInteger[s]] [[2]]], Union[ Transpose[ FactorInteger[s]] [[2]]] [[1]]]] == {0}, Print[n]], {n, 2, 10^3} ] (* Robert G. Wilson v, Nov 26 2001 *)
  • PARI
    is(n)=ispower(sigma(n)) \\ Charles R Greathouse IV, Mar 09 2014

Extensions

More terms from Vladeta Jovovic, Nov 25 2001

A180162 a(n) is the smallest number N such that sigma(N) is an n-th power but not a higher power, with a(n) = 0 if no such number exists.

Original entry on oeis.org

1, 2, 3, 7, 510, 21, 17490, 93, 217, 381, 651, 118879530, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429
Offset: 0

Views

Author

Walter Kehowski, Aug 14 2010, Aug 19 2010

Keywords

Examples

			a(4)=510 since 510=2*3*5*17, sigma(510)=2^4*3^4.
a(11)=2*3*5*7*11*53*971=118879530 since sigma(118879530)=6^11.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    egcd:=proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z-> z[2],L); igcd(op(L)) else 0 fi end:
    P:={}: SP:={}:
    for w to 1 do
    for n from 1 to 12^6 do
    sn:=sigma(n);
    esn:=egcd(sn);
    if not esn in P then
    P:=P union {esn};
    SP:=SP union {[esn,n]};
    printf("n=%d, esn=%d, sn=...\n",n,esn);
    print(ifactor(sn));
    fi;
    od; #n
    od; #w
    P; SP;

Formula

a(n) >= A063869(n). - R. J. Mathar, Aug 20 2010

Extensions

a(11) found by Walter Kehowski and Artur Jasinski, Aug 16 2010
Edited by N. J. A. Sloane, Aug 19 2010
a(23) onwards from Ray Chandler, Aug 19 2010

A175433 a(n) = the smallest number m such that sigma(n) = m^k for any k >= 1 (sigma = A000203).

Original entry on oeis.org

1, 3, 2, 7, 6, 12, 2, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 2, 6, 24, 60, 31, 42, 40, 56, 30, 72, 2, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 12, 68, 126, 96, 12
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2010

Keywords

Comments

a(n) = A000203(n) ^ (1 / A175432(n)).
a(n) = A052410(A000203(n)). - Antti Karttunen, Nov 06 2017

Examples

			For n = 7, a(7) = 2 because sigma(7) = 8 = 2^3.
		

Crossrefs

Programs

  • Mathematica
    Array[#^(1/Apply[GCD, FactorInteger[#][[All, -1]]]) &@ DivisorSigma[1, #] &, 105] (* Michael De Vlieger, Nov 05 2017 *)
  • PARI
    A175433(n) = { my(s=sigma(n),m); ispower(s,,&m); if(m,m,s); }; \\ Antti Karttunen, Nov 05 2017

Extensions

Extended by Ray Chandler, Aug 20 2010

A175431 Numbers m such that sigma(m) is not a nontrivial power, i.e., sigma(m) = A000203(n) is not equal a^b where a and b are greater than 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2010

Keywords

Comments

Complement of A065496.
A175432(a(n)) = 1 for n >= 1.

Examples

			Number 3 is not in the sequence because sigma(3) = 4 = 2^2.
		

Crossrefs

Extensions

Extended by Ray Chandler, Aug 20 2010
Showing 1-5 of 5 results.