cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A065522 Numbers k such that sigma(k) and sigma(k+1) are nontrivial powers (A065496).

Original entry on oeis.org

21, 93, 381, 1065, 1173, 5065, 5670, 5729, 6603, 8809, 10281, 10680, 15960, 17110, 39286, 40526, 47882, 49951, 61962, 85058, 85261, 99066, 117860, 125985, 126853, 135890, 143241, 159901, 171945, 179556, 185853, 208744, 209585, 210450, 251394, 261767, 288792
Offset: 1

Views

Author

Robert G. Wilson v, Nov 27 2001

Keywords

Examples

			10680 is in this sequence because sigma(10680)=180^2 and sigma(10681)=108^2. - _Sean A. Irvine_, Sep 04 2023
		

Crossrefs

Cf. A065496.

Programs

  • Mathematica
    nn = 300000; SequencePosition[Array[GCD @@ FactorInteger[DivisorSigma[1, #]][[All, -1]] &, nn + 1], {?(# > 1 &), ?(# > 1 &)}][[All, 1]] (* Michael De Vlieger, Sep 04 2023 *)

Extensions

Missing terms inserted by Sean A. Irvine, Sep 04 2023

A175432 a(n) = the greatest number k such that sigma(n) = m^k for any m >= 1 (sigma = A000203).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2010

Keywords

Comments

a(A175431(n)) = 1 for n >= 1.
a(A065496(n)) > 1 for n >= 1.
It appears that the record values in this sequence, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, ..., is A180221 with a 1 prepended, at least through term #469. Is this a theorem? - Ray Chandler, Aug 20 2010

Examples

			For n = 7, a(7) = 3 because sigma(7) = 8 = 2^3.
		

Crossrefs

For locations of records see A169981.

Programs

Formula

a(n) = A052409(A000203(n)). - N. J. A. Sloane, Aug 19 2010
a(n) = log_A175433(n) [A000203(n)].

A180162 a(n) is the smallest number N such that sigma(N) is an n-th power but not a higher power, with a(n) = 0 if no such number exists.

Original entry on oeis.org

1, 2, 3, 7, 510, 21, 17490, 93, 217, 381, 651, 118879530, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429
Offset: 0

Views

Author

Walter Kehowski, Aug 14 2010, Aug 19 2010

Keywords

Examples

			a(4)=510 since 510=2*3*5*17, sigma(510)=2^4*3^4.
a(11)=2*3*5*7*11*53*971=118879530 since sigma(118879530)=6^11.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    egcd:=proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z-> z[2],L); igcd(op(L)) else 0 fi end:
    P:={}: SP:={}:
    for w to 1 do
    for n from 1 to 12^6 do
    sn:=sigma(n);
    esn:=egcd(sn);
    if not esn in P then
    P:=P union {esn};
    SP:=SP union {[esn,n]};
    printf("n=%d, esn=%d, sn=...\n",n,esn);
    print(ifactor(sn));
    fi;
    od; #n
    od; #w
    P; SP;

Formula

a(n) >= A063869(n). - R. J. Mathar, Aug 20 2010

Extensions

a(11) found by Walter Kehowski and Artur Jasinski, Aug 16 2010
Edited by N. J. A. Sloane, Aug 19 2010
a(23) onwards from Ray Chandler, Aug 19 2010

A180169 Sigma(A180162(n)), where A180162(n) is the smallest N such that sigma(N) is an n-th power, or 0 if no such N can be found.

Original entry on oeis.org

1, 3, 4, 8, 1296, 32, 46656, 128, 256, 512, 1024, 362797056, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Walter Kehowski, Aug 14 2010

Keywords

Examples

			A180162(4)=510 and so A180169(4)=sigma(510)=2^4*3^4.
		

Crossrefs

Formula

Empirical o.g.f.: (-1-1*x+2*x^2-1280*x^4+2560*x^5-46592*x^6+93184*x^7-362795008*x^11+725590016*x^12)/(2*x-1). - Simon Plouffe, Feb 26 2011.

Extensions

a(23) onwards from Ray Chandler, Aug 20 2010

A281140 Least k such that k is the product of n distinct primes and sigma(k) is an n-th power.

Original entry on oeis.org

2, 22, 102, 510, 90510, 995610, 11616990, 130258590, 1483974030, 18404105922510, 428454465915630, 10195374973815570, 240871269907008510, 94467020965716904490370, 4580445736068712946096430, 7027383957579235221501981990, 419420669769073022876839238610, 24967450935148397377034326845390
Offset: 1

Views

Author

Altug Alkan, Jan 15 2017

Keywords

Comments

Freiberg (Theorem 1.2) shows that there are >> (n*x^(1/n))/(log x)^(n+2) such values of k up to x. He calls the set of such numbers B*(x;+1;n). In particular, a(n) exists for each n.
Corresponding values of sigma(k) are 3 = 3^1, 36 = 6^2, 216 = 6^3, 1296 = 6^4, 248832 = 12^5, 2985984 = 12^6, 12^7, 12^8, 12^9, 24^10, 24^11, 24^12, 24^13, 48^14, 48^15, 60^16, 60^17, 60^18, 60^19, 84^20, 84^21, 84^22, 84^23, ...
a(14) <= 94467020965716904490370. - Daniel Suteu, Mar 28 2021

Examples

			a(3) = 102 because 102 = 2 * 3 * 17 and (2 + 1)*(3 + 1)*(17 + 1) = 6^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=2); while(!issquarefree(k) || !ispower(sigma(k), n) || omega(k)!=n, k++); k \\ Felix Fröhlich, Jan 17 2017

Extensions

a(10)-a(13) from Jinyuan Wang, Nov 08 2020
a(14) from Daniel Suteu and David A. Corneth, Mar 28 2021
a(15)-a(18) from David A. Corneth, Mar 29 2021

A065523 Numbers n such that sigma(n) is a prime power (A025475).

Original entry on oeis.org

3, 7, 21, 31, 81, 93, 127, 217, 381, 400, 651, 889, 2667, 3937, 8191, 11811, 24573, 27559, 57337, 82677, 131071, 172011, 253921, 393213, 524287, 761763, 917497, 1040257, 1572861, 1777447, 2752491, 3120771, 3670009, 4063201, 5332341
Offset: 1

Views

Author

Robert G. Wilson v, Nov 27 2001

Keywords

Crossrefs

A proper subset of A065496.

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, n ]; Select[ Range[2, 10^6], !PrimeQ[ s[ # ]] && Mod[ s[ # ], s[ # ] - EulerPhi[ s[ # ]]] == 0 & ]

Extensions

a(31)-a(35) from Donovan Johnson, Sep 05 2008

A124142 Abundant numbers k such that sigma(k) is a perfect power.

Original entry on oeis.org

66, 70, 102, 210, 282, 364, 400, 510, 642, 690, 714, 770, 820, 930, 966, 1080, 1092, 1146, 1164, 1200, 1416, 1566, 1624, 1672, 1782, 2130, 2226, 2250, 2346, 2460, 2530, 2586, 2652, 2860, 2910, 2912, 3012, 3198, 3210, 3340, 3498, 3522, 3560, 3710, 3810
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Comments

Positive integers k such that sigma(k) > 2*k and sigma(k) = a^b where both a and b are greater than 1.
If k is a term with sigma(k) a square, and p and q are members of A066436 that do not divide k, then k*p*q is in the sequence. Thus if A066436 is infinite, so is this sequence. - Robert Israel, Oct 29 2018

Examples

			a(1) = 66 since sigma(66) = 144 = 12^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; fi od od;
  • Mathematica
    filterQ[n_] := With[{s = DivisorSigma[1, n]}, s > 2n && GCD @@ FactorInteger[s][[All, 2]] > 1];
    Select[Range[4000], filterQ] (* Jean-François Alcover, Sep 16 2020 *)
  • PARI
    is(k) = {my(s = sigma(k)); s > 2*k && ispower(s);} \\ Amiram Eldar, Aug 02 2024

A124143 Perfect powers pp such that sigma(k) = pp for some positive integer k.

Original entry on oeis.org

4, 8, 32, 36, 121, 128, 144, 216, 256, 324, 400, 512, 576, 784, 900, 961, 1024, 1296, 1600, 1728, 1764, 1936, 2304, 2704, 2744, 2916, 3136, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5776, 5832, 6084, 6400, 7056, 7744, 7776, 8000, 8100, 8192, 9216, 9604
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Examples

			a(1) = 4 since sigma(3) = 4 = 2^2.
		

Crossrefs

Intersection of A001597 and A002191 \ {1}.
Cf. A065496.

Programs

  • Magma
    Set(Sort([SumOfDivisors(k): k in[1..10000], b in [2..15], a in [2..100] | SumOfDivisors(k) eq a^b])); // Jaroslav Krizek, Mar 10 2015
    
  • Magma
    Set(Sort([SumOfDivisors(k): k in[A065496(n)]])); // Jaroslav Krizek, Mar 10 2015
    
  • Maple
    with(numtheory); egcd := proc(n) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
  • Mathematica
    powerQ[n_] := Block[{pf = FactorInteger@ n, min}, min = Min @@ Last /@ pf; min > 1 && AllTrue[Last /@ pf/min, IntegerQ]]; lim = 10000; Intersection[Select[Range@ lim, powerQ], DeleteDuplicates@ Sort[DivisorSigma[1, #] & /@ Range@ lim]] (* Michael De Vlieger, Mar 10 2015 *)
  • PARI
    is(n) = ispower(n) && invsigmaNum(n) > 0; \\ Amiram Eldar, Aug 02 2024, using Max Alekseyev's invphi.gp

A124144 Perfect powers pp such that sigma(k) = pp for some abundant number k.

Original entry on oeis.org

144, 216, 576, 784, 961, 1296, 1728, 1764, 2304, 2744, 3136, 3600, 3844, 4356, 5184, 6084, 7056, 7776, 8100, 9216, 11664, 12544, 13824, 14400, 15376, 15876, 17424, 19600, 20736, 21952, 24336, 27000, 28224, 32400, 34596, 36864, 38416, 39204, 41616, 44100, 46656, 50176
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Examples

			a(1) = 144 since sigma(66) = 144 > 2*66 = 132.
		

Crossrefs

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
  • Mathematica
    ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1;
    f[n_] := Module[{s = DivisorSigma[1, n]}, If[s > 2*n, s, Nothing]];
    seq[max_] := Union[Select[Array[f, max], # < max && ppQ[#] &]]; seq[60000] (* Amiram Eldar, Mar 11 2024 *)

Extensions

a(32) inserted and more terms added by Amiram Eldar, Mar 11 2024

A175431 Numbers m such that sigma(m) is not a nontrivial power, i.e., sigma(m) = A000203(n) is not equal a^b where a and b are greater than 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2010

Keywords

Comments

Complement of A065496.
A175432(a(n)) = 1 for n >= 1.

Examples

			Number 3 is not in the sequence because sigma(3) = 4 = 2^2.
		

Crossrefs

Extensions

Extended by Ray Chandler, Aug 20 2010
Showing 1-10 of 11 results. Next