A170368 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
Programs
-
Mathematica
With[{num=Total[2t^Range[42]]+t^43+1,den=Total[-21 t^Range[42]]+231t^43+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Feb 01 2014 *)
Formula
G.f.: (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^43 - 21*t^42 - 21*t^41 - 21*t^40 - 21*t^39 - 21*t^38 - 21*t^37 - 21*t^36 - 21*t^35 - 21*t^34 - 21*t^33 - 21*t^32 - 21*t^31 - 21*t^30 - 21*t^29 - 21*t^28 - 21*t^27 - 21*t^26 - 21*t^25 - 21*t^24 - 21*t^23 - 21*t^22 - 21*t^21 - 21*t^20 - 21*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
Comments