cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170708 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 351. - Vincenzo Librandi, Dec 06 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-25 t^Range[49]] + 325 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Vincenzo Librandi, Dec 06 2012 *)
    coxG[{50,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 07 2019 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + ,2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + ,2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + ,2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + ,2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + ,2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + ,2*t + 1)/(325*t^50 - 25*t^49 - 25*t^48 - 25*t^47 - 25*t^46 - 25*t^45 - ,25*t^44 - 25*t^43 - 25*t^42 - 25*t^41 - 25*t^40 - 25*t^39 - 25*t^38 - ,25*t^37 - 25*t^36 - 25*t^35 - 25*t^34 - 25*t^33 - 25*t^32 - 25*t^31 - ,25*t^30 - 25*t^29 - 25*t^28 - 25*t^27 - 25*t^26 - 25*t^25 - 25*t^24 - ,25*t^23 - 25*t^22 - 25*t^21 - 25*t^20 - 25*t^19 - 25*t^18 - 25*t^17 - ,25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - ,25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - ,25*t + 1).