cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170748 Expansion of g.f.: (1+x)/(1-28*x).

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176, 147832005301913337724928
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2009

Keywords

Crossrefs

Programs

  • GAP
    k:=29;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 25 2019
  • Magma
    k:=29; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 25 2019
    
  • Maple
    k:=29; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 25 2019
  • Mathematica
    Join[{1},Table[29*28^(n-1),{n,20}]] (* or *) Join[{1}, NestList[28#&, 29, 20]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    vector(26, n, k=29; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 25 2019
    
  • Python
    for i in range(31):print(i,29*28**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
    
  • Sage
    k=29; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 25 2019
    

Formula

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*29^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 29*28^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (29*exp(28*x) -1)/28. - G. C. Greubel, Sep 25 2019