A170755 Expansion of g.f.: (1+x)/(1-35*x).
1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..644
- Index entries for linear recurrences with constant coefficients, signature (35).
Crossrefs
Cf. A003945.
Programs
-
GAP
k:=36;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
-
Magma
k:=36; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
-
Maple
k:=36; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
-
Mathematica
With[{k = 36}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
-
PARI
vector(26, n, k=36; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
-
Sage
k=36; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
Formula
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*36^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 36*35^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (1/35)*(36*exp(35*x) - 1). - Stefano Spezia, Oct 09 2019