A170756 Expansion of g.f.: (1+x)/(1-36*x).
1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472, 227214861935198173396992
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..639
- Index entries for linear recurrences with constant coefficients, signature (36).
Crossrefs
Cf. A003945.
Programs
-
GAP
k:=37;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
-
Magma
k:=37; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
-
Maple
k:=37; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
-
Mathematica
With[{k = 37}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
-
PARI
vector(26, n, k=37; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
-
Sage
k=37; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
Formula
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*37^k. - Philippe Deléham, Dec 04 2009
E.g.f.: (1/36)*(37*exp(36*x) - 1). - Stefano Spezia, Oct 09 2019