A170796 a(n) = n^10*(n^4 + 1)/2.
0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
-
Magma
[n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
-
Maple
seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Mathematica
Table[n^10*(n^4 +1)/2, {n,0,20}] (* G. C. Greubel, Oct 11 2019 *)
-
PARI
vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
Sage
[n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
Formula
From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)