A170798 a(n) = n^10*(n^6 + 1)/2.
0, 1, 33280, 21552885, 2148007936, 76298828125, 1410585186816, 16616606522425, 140738025226240, 926511837818121, 5000005000000000, 22974877900498381, 92442160406200320, 332708373520835845, 1088976813532013056
Offset: 0
Examples
a(2) = 33280 is the number of inequivalent 4 X 4 binary matrices up to taking the transpose. - _David Nacin_, Feb 20 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> n^10*(n^6 +1)/2); # G. C. Greubel, Oct 11 2019
-
Magma
[n^10*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(n^10*(n^6+1)/2, n=0..20); # G. C. Greubel, Oct 12 2019
-
Mathematica
Table[n^10*(n^6+1)/2,{n,0,30}] (* Harvey P. Dale, Aug 27 2016 *)
-
PARI
concat(0, Vec(-x*(x +1)*(x^14 +33262*x^13 +20953999*x^12 +1765180292*x^11 +40926077261*x^10 +350131349138*x^9 +1253612167971*x^8 +1937785948152*x^7 +1253612167971*x^6 +350131349138*x^5 +40926077261*x^4 +1765180292*x^3 +20953999*x^2 +33262*x +1) / (x -1)^17 + O(x^30))) \\ Colin Barker, Jul 11 2015
-
PARI
vector(21, m, (m-1)^10*((m-1)^6 + 1)/2) \\ G. C. Greubel, Oct 11 2019
-
Sage
[n^10*(n^6 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
Formula
G.f.: x*(x+1)*(x^14 + 33262*x^13 + 20953999*x^12 + 1765180292*x^11 + 40926077261*x^10 + 350131349138*x^9 + 1253612167971*x^8 + 1937785948152*x^7 + 1253612167971*x^6 + 350131349138*x^5 + 40926077261*x^4 + 1765180292*x^3 + 20953999*x^2 + 33262*x + 1)/(1-x)^17. - Colin Barker, Jul 11 2015
E.g.f.: x*(2 + 33278*x + 7151016*x^2 + 171833006*x^3 + 1096233075*x^4 + 2734949385*x^5 + 3281888484*x^6 + 2141764803*x^7 + 820784295*x^8 + 193754991*x^9 + 28936908*x^10 + 2757118*x^11 + 165620*x^12 + 6020*x^13 + 120*x^14 + x^15)*exp(x)/2. - G. C. Greubel, Oct 12 2019
Comments